
In Situ Visualization for Large-Scale Combustion
Simulations

Research Paper Literature Review

Ankur Kumar, Jai Verma, Sahil Gala

Indian Institute of Technology Kanpur

CS677
Topics in Large Data Analysis and Visualization



Overview of the Presentation 2

1. Introduction

2. Implementation Details

3. Case Study on Turbulent Combustion

4. Results

5. Summary



The Power and Challenge of Supercomputers 3

▶ Supercomputers are vital for scientific breakthroughs

▶ Enables large-scale simulations like climate patterns and astrophysical events.

▶ However, cost of maintenance means limited access, with researchers
competing for it.

▶ Researchers must maximize the efficiency and insights of each simulation.



Traditional Methods: Post-processing 4

▶ Post-processing: Post Processing stored the vast raw simulation data for
later analysis and visualization.

▶ The Limitations: As simulations became complex, storing and transferring
TBs/PBs of data became a major challenge, often delaying insights by weeks.



Traditional Methods: Co-processing 5

▶ Co-processing: Here, visualization occurs on separate machine during the
simulation, reducing the simulation data to smaller visualization data,
decreasing storage load.

▶ The Limitations: Moving large datasets to visualization system remained an
I/O bottleneck, especially when dealing with the scale of modern simulations.



What is In Situ Visualization? 6

▶ Definition: Generating visual representations of data directly on the same
computational resources where the simulation is being run, without the need
to transfer data to a separate visualization system.

▶ Basic Concept: We want to reduce the data size that needs to be
transferred and stored by performing visualization tasks simultaneously with
the simulation, providing real-time insights.

▶ Key Features: In situ visualization is tightly coupled with the simulation
process, enabling direct interaction with the data as it is being generated.



Benefits of In Situ Visualization 7

▶ Scalability: Can handle the massive volumes of data generated by modern
simulations, alleviating storage and transfer limitations.

▶ Real-Time Insights: Researchers can gain immediate feedback on the
simulation’s progress.

▶ Data Reduction: Replaces the need for storing large raw data by
significantly smaller visualization data.

▶ Data Transfer: Replaces the need for storing large raw data by significantly
smaller visualization data.

▶ Lesser Compute Need: An alternative that simplifies the calculations such
that visualization accounts for only a small fraction of the simulation time



Comparison with Traditional Methods 8

▶ Postprocessing: In traditional postprocessing, data is stored after
simulation and analyzed later. This method is time-consuming and requires
large storage capacities.

▶ Coprocessing: Coprocessing involves visualizing data on a separate machine
during the simulation, which reduces some of the data transfer issues but still
requires significant resources for data movement.

▶ In Situ Visualization: In situ visualization eliminates the need for
large-scale data transfer and storage by processing and visualizing data in
real-time on the same machine, offering a highly scalable solution.



Challenges with In Situ Visualization 9

▶ The visualization code must interact directly with the simulation code.

▶ Balancing the visualization workload is more difficult because the
visualization must comply and tightly couple with the simulation architecture.

▶ Visualization calculations must not incur excessive costs, with decoupled
I/O delivering rendering results while simulation is running

▶ The scalability of in situ visualization becomes a concern,introducing
significant bottlenecks (particularly in areas like image compositing).



Architecture of In Situ Visualization 10

▶ System Architecture: In situ visualization works alongside simulation
codes, often sharing the same resources and to minimize data movement.

▶ Key Components: The main components include data processing modules,
rendering engines, and communication protocols that allow the fluid
interaction between the two processes.

▶ Integration with Simulations: Ensures that visualization is tightly coupled
with simulation, eminimizing delays wherever possible.



Parallel Rendering Techniques 11

▶ To handle the massive datasets generated by simulations, we rely on parallel
rendering techniques for independent similar tasks.

▶ Volume Rendering: Generating visual representations of 3D data, typically
by casting rays through the data and calculating how light interacts with each
voxel.

▶ Particle Rendering: Used for simulations involving particles (here,
combustion) where each particle’s position and properties are rendered to
visualize the simu.



Volume Rendering 12

▶ The simulation domain is divided into smaller regions, each assigned to a
different processor, to handle the large data in parallel.

▶ Duplicate the data along the edges of the data regions (two voxels wide), to
achieve seamless rendering across data partition boundaries

▶ A processor responsible for a data region typically needs to communicate with
its 26 neighboring processors.

▶ By avoiding diagonal communication, a processor only needs to communicate
with six neighboring processors.



Particle Rendering 13

▶ Blend the Boundary points correctly along the boundaries when integrated
with volume rendering.

▶ Then, we use the normal to calculate the lighting using the Phong model and
the eye and light directions.

▶ Algorithm:

1. Each processor renders in its data region.
2. Exchanges information with particles along the neighbouring boundaries.
3. Renders the particles along its boundary (2 voxel) on both sides
4. We perform volume ray casting with depth lookup of the particle’s RGBA values.



Caveat: Boundary Data 14

Domain Decomposition Challenges:

▶ In large-scale simulations, data must be replicated across domain boundaries
to ensure smooth continuity.

▶ Simulation Code:
▶ Requires four voxel-wide boundaries for accurate gradient and derivative

calculations.
▶ Uses a single buffer to store boundary data for one variable at a time to manage

memory efficiently.

▶ Volume Rendering:
▶ Needs only two voxel-wide boundaries for seamless visual output.
▶ The simulation’s buffer often lacks the specific variables required by the

renderer, creating additional challenges.



Caveat: Boundary Data 15



Optimizing Data Sharing Between Simulation and Visualization 16

Balancing Memory and Performance:

▶ Storing all boundary data on the simulation side would lead to excessive
memory use and require complex code modifications.

Practical Solution:

▶ The visualization code performs an additional boundary exchange among
processors to gather the necessary two-voxel-wide data for rendering.

▶ Outcome:
▶ This adds some communication overhead, but it is manageable and essential for

effective integration of the simulation and visualization processes.
▶ Helps maintain a balance between memory efficiency and the need for accurate,

real-time visualization.



Image Compositing in In Situ Visualization 17

▶ Partial images generated by different processors are combined to produce the
final output.

▶ Binary Swap Algorithm: It involves pairing processors in a binary tree
structure to exchange and combine image data. At any stage, a processor
communicates only with its counterpart.

▶ Direct send requires n processors to exchange O(n2) messages, binary swap
requires only O(n log n) messages

▶ Challenges with Binary Swap: The binary swap algorithm, requires the
number of processors to be a power of 2.

▶ For 2k−1 < n < 2k, we send the image data from n− 2k−1 processors to the
remainder of 2k−1 processors. We then perform binary swap directly on the
2k−1 processors.



2-3 Swap Algorithm 18

▶ The 2-3 swap algorithm partitions processors into small groups of two or three
for the compositing process, unlike traditional methods that pair processors.

▶ Within each group, a processor communicates only with the other processors
in its group, which is typically no more than four processors per group. This
localized communication reduces the complexity and overhead of data
exchange.

▶ Performance Improvements: The 2-3 swap algorithm merges Direct
Send’s flexibility with binary swap’s efficiency, scaling well to thousands of
processors. It improves performance in large-scale simulations by reducing
communication bottlenecks and enhancing parallel efficiency.



2-3 Swap Algorithm 19



Integration with S3D Simulation Code 20

▶ S3D, developed by Sandia National Laboratories, is a DNS code designed for
high-fidelity simulations of turbulent combustion.

▶ S3D employs an eighth-order approximation for spatial derivatives and a
high-order Runge-Kutta method to advance mass, momentum, energy, and
species equations.

▶ It accurately resolves the Navier-Stokes equations coupled with detailed
chemical kinetics, essential for accurate combustion modeling.

∂ρYα
∂t

= −∂ρuiYα
∂xi

− ∂ρVαiYα
∂xi

+ ωα (1)

▶ In situ visualization is integrated directly within the S3D code, ensuring
minimal data movement and maintaining synchronization.



Integration with Simulation Side 21

Initialize Simulation Module

Provide coordinates of each processor’s domain

Provide pointer to buffer of local scalar-variables

Solver updates scalar variable (particle data) at each time step

Invoke visualization calculations at a given rate

Implement API functions on visualization side

Modify simulation code with function calls



Integration with Visualization Side 22

Initialize Visualization Module

Perform Volume and Partial Rendering

Calculate Depth and Gather Values

Visibility Sorting of All Processors

Process 2-3 Swap Tree and Communication Schedule

(Recompute on View Changes)

Host Processor Gathers Final Image



Results 23

▶ Simulation Environment: Tested with a lifted-jet combustion simulation at
JaguarPF, Sandia Lab and Cray XT5, Oak Ridge National Laboratory.

▶ Core Configurations:
▶ Each processor core managed a 27 × 40 × 40 region.
▶ Tested with four core numbers: 240, 1,920, 6,480, and 15,360.
▶ Core configurations were 15 × 8 × 2, 30 × 16 × 4, 45 × 24 × 6, and 60 × 32 × 8.

▶ System Details:
▶ Phase 2: 240, 1,920, and 6,480 cores on XT5 with 20,928 AMD Opteron

processors (2.3 GHz).
▶ Phase 4: 15,360 cores on XT5 with 37,376 AMD Opteron processors (2.6 GHz).



Results 24

▶ Data Sizes and Timing:
▶ Volume data: Double floating-point (8 bytes); Particle data: Single

floating-point (4 bytes).
▶ Image resolutions tested: 2,048², 1,024², and 512².
▶ Image compositing: 32-bit float precision for RGBA, depth channels.

▶ Timing Measurements:
▶ Timing measured for one time step includes simulation, I/O, and visualization.
▶ For 6,480 cores and 1,024² image resolution: Visualization time = 6.92% of

simulation time; I/O time exceeds four times the simulation time.
▶ Visualization is performed every 10th time step.



Results 25



Results 26



Results 27

▶ Timing Breakdown:
▶ Image compositing, requires interprocessor communication, and takes most time.
▶ Volume-rendering time decreases with increasing core count due to smaller

screen projection per core.
▶ Compositing time increases with more cores due to non-optimized 2-3 swap algo.
▶ Compositing time decreases with lower image resolution due to decreased work.
▶ Compositing time decreases with lower image data precision (8-bit, 16-bit,

32-bit) for RGBA channels.



Results 28



Results 29

▶ Multivariate Data Visualization:
▶ Separate-Compositing Mode: Renders and composites one image at a time.
▶ Combined-Compositing Mode: Renders and composites multiple images

simultaneously, reducing the number of messages exchanged.
▶ Performance gain from combined-compositing mode is marginal due to low

message-passing-interface latency (approximately 1 ms).



Results 30

▶ Visualization Time per Core:
▶ Rendering time (boundary data exchange, particle and volume rendering) is

uneven among cores due to domain decomposition and transfer functions.
▶ Overall visualization time is balanced among cores because image-compositing

time is well balanced.



▶ Volume-Rendering Results:
▶ Figure below shows volume-rendering results for six selected variables.



Results 32

▶ Volume-Rendering Results:
▶ Figure below provides detailed views of integrated volume and particle rendering

for some variables.



To Summarize 33

▶ Key Advantages: Provides real-time insights, reduces data storage and
transfer needs, and enhances scalability for large-scale simulations.

▶ Challenges: Involves managing computational load, achieving load balance,
and optimizing image compositing.

▶ Comparison with Other Methods: Offers more benefits than
postprocessing and coprocessing but demands careful integration and
advanced computational resources.



Image Compositing Bottleneck 34

▶ Image compositing is a key bottleneck in in situ visualization, particularly as
image resolution and processor count increase.

▶ Potential Solutions: If costs become too high, we can optimize the
compositing algorithm by focusing on two aspects:

1. Eliminating Background Pixels: Instead of using full-size partial images, we
can reduce the data by removing background pixel data and focusing only on
effective pixels for compositing.

2. Enhancing Parallelism: By leveraging the 2-3 swap algorithm’s local
communication, cores can operate independently, allowing different levels of the
compositing tree to execute tasks concurrently.



Future Directions in In Situ Processing 35

1. Expanding Beyond Visualization: Extend in situ techniques to include
feature extraction, data compression, and statistical analysis, reducing storage
and transfer needs.

2. Real-Time Feature Extraction: Conduct feature extraction and analysis
in situ for real-time insights, enabling dynamic exploration and faster
decision-making.

3. Integrating Additional Tasks: Incorporate more processing tasks into the
in situ workflow to boost efficiency and provide a deeper understanding of
simulation results.



Q&A: 36

Questions



Thank you!


