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Scientific Visualization (SciVis)

 Scientific visualization: The use of computers or techniques for comprehending
data or to extract knowledge from the results of simulations, computations, or
measurements

* Scientific visualization is the formal name given to the field in computer science
that encompasses
* data representation and processing algorithms
* visual representations
* user interface

* Relatively (new) domain of research
* ~ 36 years

* Formal inception in 1987 by US NSF as “Visualization in Scientific Computing”
by McCormick et al.
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Scientific Visualization (SciVis)

 Scientific data has an implied spatial layout

e With scientific visualization

* Techniques can exploit the spatial properties of the information
(meshes, grids, vectors, tensors, etc.)

 Utilize the three-dimensional capabilities of today’s graphics
engines to help visually present their analysis
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Data Representation &
Scientific Data Model




Data Representation

e Scientific data is Continuous in nature

* Measure physical quantities that are studied by various scientific and
engineering disciplines, such as physics, chemistry, mechanics, or engineering

* Examples: pressure, temperature, velocity, density, etc.

* In practice, such data is sampled in a discrete form in computers
* Representation
* Manipulation
e Analysis
* Visualization
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Scientific Dataset

e A scientific dataset is a related collection of data

* With an attached spatial context (e.g., a grid)
* Captures all relevant characteristics of a data collection

* Discrete scientific dataset:

Organizing Structure cells, points
- Topology Consists of

- Geometry . scalars, vectors,

normals, tensors
Data Attributes texture coordinates
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Scientific Dataset

e Typically, a discrete dataset is sampled from a continuous domain into
a grid/mesh structure

* Agridis a set of cells, which are defined by a set of sample points, referred to
as the Geometry information

* The connectivity between the points are referred to as the Topology
e Each (grid) point can have multiple attached Attributes

» Attributes can be of various types
e Scalar, Vector, Tensor etc.

* By using the grid structure and using a reconstruction technique, data
values at any point can be computed which gives us a way to
approximately reconstruct the continuous data

* A typical reconstruction method is interpolation
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Scientific Dataset: Various Cell Types
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Ce I I I y p es ®e e Visualization Toolkit - Cocoa #1

 Code can be found:
https://kitware.github.io/vtk-
examples/site/Python/GeometricObje
cts/LinearCellDemo/

* Written using a Visualization library
called Visualization Toolkit (VTK)
* https://vtk.org/
* You can use VTK in your
assignment
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https://kitware.github.io/vtk-examples/site/Python/GeometricObjects/LinearCellDemo/
https://kitware.github.io/vtk-examples/site/Python/GeometricObjects/LinearCellDemo/
https://kitware.github.io/vtk-examples/site/Python/GeometricObjects/LinearCellDemo/
https://vtk.org/

Scientific Dataset: Grid Types

* Uniform Grid

* Rectilinear Grid

* Structured Grid

* Unstructured Grid
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Scientific Dataset: Structured Grid

 Allow explicit placement of every sample point
* Yet preserve the matrix-like ordering
 Structured grids can be seen as a deformation of uniform grids
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Scientific Dataset: Unstructured Grid

* Allow us to define both the sample points and cells explicitly
e Different cell types can be mixed
 Connectivity is explicitly specified
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Linear Interpolation for
Scientific Data




Why Interpolation?

* Most visualization algorithms have to deal with discrete data
* Data attributes that are defined at the cell vertices

N AN

(a) vertex (b) Polyvertex  (c)line (d) polyline (e) triangle

e) Quadrilateral e) Polygon f) Tetrahedron
le) (e) Polve () (f) Hexahedron
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Why Interpolation? ParaView Demo
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Linear Interpolation (LERP)

* Linear interpolation (lerp): connecting two points with a straight line
in the function plot

Y =f(x) i

f(x1)
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Linear Interpolation (LERP)

* General form: V.= 3 w, *v. (weighted sum)

. v;: value at vertex i
v Wi weight for v,
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Linear Interpolation (LERP)

* General form: Vo= X w;*v;  (weighted sum)
. v;: value at vertex i
w;. weight for v,

e Essential information needed:
e Cell type
e Data value at cell corners

* Parametric coordinates of the point in question (P)
* Related to the position of point P in the cell
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LERP in Line

V,?
A P Vv,
( @ ®
— a — b |
* Parametric coordinate of P: o = a/ (a+b)

* Linearly interpolated value of P:

Ve = (1) Yy 4 o RV,
lerp(vl,v2, o)
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Lerp in Triangle

* Parametric coordinates of P: (c.,f3,y)

o = 0A / (8A + 8B + 6C) \
B=23B/(8A+ 8B + 3C) Baricentric Coordinates

¥ =0C/ (0A + 0B + 0C)

* Linearly interpolated value of P: [V, * a+ Vg * B+ V . * vy

IITK C677: Topics in Large Data Analysis and Visualization



SR

‘s‘”"»%
e
&

Lerp in Rectangle
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Lerp in Rectangle

* Parametric coordinates of P: (a,[3)

IITK C677: Topics in Large Data Analysis and Visualization



Lerp in Rectangle

R
* Parametric coordinates of P: (a,[3)
o = a/ width;

e Value at L, = Lerp(V, Vg o) ;
* Value at L, = Lerp(V.Vp,a) ;
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Lerp in Rectangle

* Parametric coordinates of P: (a,[3)
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Lerp in Rectangle

* Parametric coordinates of P: (a.,[3)
o= a/width; B = b/ height
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Lerp in Rectangle
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* Parametric coordinates of P: (a.,[3)
o= a/width; 3 = b/ height

* Linearly interpolated value of P:| Lerp(V,4, V|5, B)
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Lerp in Rectangle

A: a\Lil
T P9
b
N
C

* Parametric coordinates of P: (a,[3)

o= a/width; B = b/ height Bi-linear interpolation

Bi-Lerp(V,,Vg, V¢, Vp)

/

* Linearly interpolated value of P:

Lerp(VLlr VLZI B)
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Lerp in Cube
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Lerp in Cube

* Value at A =Bi-Lerp(Vy,V,,V,,V3) ;

* Value at B = Bi-Lerp(V,,V:,Ve,V5) ;
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Lerp in Cube

* Value at A =Bi-Lerp(Vy,V,,V,,V3) ;

* Value at B = Bi-Lerp(V,,V:,Ve,V5) ;
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Lerp in Cube

Ve \Z
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v, I Ve
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* Value at A =Bi-Lerp(Vy,V,,V,,V3) ;

* Value at B = Bi-Lerp(V,Vs, Ve, V-) ; —
Tri-linear

* Value at P = Lerp(A,B, PA/AB);,  «— interpolation
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Isocontour Algorithm
(2D and 3D)




What is an Isocontour?

e A contour is a curve(2D)/surface(3D) in a
scalar field where the value of the scalar
function is constant across the domain

e Scalar fields: pressure, temperature, etc.
— 2D:isoline
— 3D: Isosurface

— A technique for analyzing and visualizing
scalar field data or scalar functions

IITK C677: Topics in Large Data Analysis and Visualization



What is an Isocontour?

e A contour is a curve(2D)/surface(3D) in a
scalar field where the value of the scalar
function is constant across the domain

e Scalar fields: pressure, temperature, etc.
— 2D:isoline

— 3D: Isosurface

— A technique for analyzing and visualizing
scalar field data or scalar functions
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What is an Isocontour?

e A contour is a curve(2D)/surface(3D) in a
scalar field where the value of the scalar
function is constant across the domain

e Scalar fields: pressure, temperature, etc.
— 2D:isoline
— 3D: Isosurface

— A technique for analyzing and visualizing
scalar field data or scalar functions

3D isocontour: Isosurface
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Isocontour Demo ParaView

ParaView 5.11.0
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2D Isocontour Extraction

* Given a 2D scalar field, compute isocontour (isoline) for isovalue = C

(‘\ ~ Jan\ N N\ N\
— D N Y Y Y <))
—P——D—D—D— 3 va
(’\ D J\ D D J4A) r>

./ NIV YV 0/ U/ 1V N
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./ L) \J/ 1V 1/ I N
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~ N T N = N> ¥ N vl v2
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2D Isocontour Extraction

* Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
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2D Isocontour Extraction

* Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
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2D Isocontour Extraction: Marching Squares

* Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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2D Isocontour Extraction: Marching Squares

* Given a 2D scalar field, compute isocontour (isoline) for isovalue = C

* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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O Value<C
@ D >———0—9
@ P bDb——0—0—0@
1 1| o e e

IITK C677: Topics in Large Data Analysis and Visualization



2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm

® ® ® 0o o o

@ ® ® ® o—0 O

b—a \o " A W — Contour value (isovalue) =C
@® Value>C

— O\ *—o 0o
O Value<C

G, S” o——0—0—0

@ P bDb——0—0—0@

G—6—36b—3I o —0—0

IITK C677: Topics in Large Data Analysis and Visualization



2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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2D Isocontour Extraction: Marching Squares

e Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
* This is usually done in a cell-by-cell manner using Marching Squares algorithm
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Isocontour in a 2D Cell

* Finding Isocontour in a cell is an inverse problem of value
interpolation

Interpolation

P=?
pd —© ® pS5
00 ® ® pl
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Isocontour in a 2D Cell

* Finding Isocontour in a cell is an inverse problem of value
interpolation

Interpolation Isocontouring
P2 o o M3 P2 o o P3
p=? 2P
ps —© ® p5 f(P)=C
[ o
PO p1 oo © ® p1
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Isocontouring by Linear Interpolation

 Compute isocontour within a cell based on linear interpolation

P2 (+) * |dentify edges that are ‘zero crossing’
P3(+) * Values at the two end points are
greater (+) and smaller (=) than the
contour value
* Calculate the positions of P in those edges
PO () P1()

* Connect the points with a line
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Step 1: Identify Edges

* Edges that have values greater (+) and less (H than the contour values
must contain a point P that has f(p) = C

e —This is based on the assumption that values vary linearly and
continuously across the edge

vl

c f(p1) =v1 f(p2)
o O

v2
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Step 2: Compute Intersection

* The intersection point f(p) = C on the edge can be computed by linear
interpolation

di/d2 = (v1-C)/(C-v2) 5 |(p-p1)/(p2-pl)= (v1-C)/ (v1-v2)

p=(v1-C)/(vl-v2)* (p2-pl)+pl

vl

C flp1)=v1 P f(p2) =v2
® O O

v2 dl d2
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Step 3: Connect the Dots

* Based on the principle of linear interpolation, all points along the line
P4P5 have values equal to C (isovalue)

P2 (+) o P3(+)
P4
P5
PO Op1y

Repeat Stepl — Step 3 for all cells
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|socontour Cases

* How many ways can an isocontour intersect a rectangular cell?
1: >C

alsl

Case 0 Case 1 Case 2

o0——0
*——
Case 3
o S, A 1] 7]
Case 7

P

Case 4 Case 5 Case 6

e The value at each vertex can be either
greater or less than the contour value D I::I m

Case 8 Case 9 Case 10 Case 11

e So,thereare2x2x2x2=16cases B Q EI I:I

Case 12 Case 13 Case 14 Case 15
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Putting it All Together

e 2D Isocontouring algorithm for square
meshes:

* Process one cell at a time

 Compare the values at 4 vertices with
the contour value C and identify
intersected edges

* Linearly interpolate along the
intersected edges

* Connect the interpolated points
together
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3D Isocontour: Isosurface

* The 2D algorithm extends naturally to 3D where the data will have 3D
cells

* Identify ‘active cells’: cells that intersect with the Isosurface
* Linear interpolation along edges in active cells

 Compute surface patches within each cell based on the edges that
have intersected with the Isosurface
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3D Isocontour: Cube/Rectangular Cells

* With 8 vertices in a cell, each having a value
greater or smaller than the contour value, there
can be 28= 256 possible cases

Cube/Rectangular cell
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3D Isocontour: Cube/Rectangular Cells

* With 8 vertices in a cell, each having a value
greater or smaller than the contour value, there
can be 28= 256 possible cases

Cube/Rectangular cell

4 4 4 -

But the total number of unique topological cases is much less than 256
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3D Isosurface Unique Cases

* 15 Topologically Unique Cases

e

IITK C677: Topics in Large Data Analysis and Visualization



Marching Cubes Algorithm

e Lorensen and Cline in 1987
v8 v/

* Mark each cell vertex with a bit
* V.is 1if value > C (C=isovalue)
* V.isOifvalue<C

e Each cell has an index mapped to a value ,
ranged [0,255]

v4

i___ v6

vl v2

Index=|v8 |[v7| v6(v5| v4|v3|v2 | vl
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Marching Cubes Algorithm

* Based on the values at the vertices, map the cell to one of the 15 cases
* Perform a table lookup to see what edges have intersections

e’/

el0

Index =|v8 |v7| v6|v5 | v4 | v3|Vv2

vl
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Marching Cubes Algorithm

* Perform linear interpolation to compute the intersection points at
the edges

* Connect the points to form surface patches
e Sequentially scan through the cells — row by row, layer by layer

// .
J 1/
/.

/
/

[ 7 7 7 7 77
/
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Marching Cubes Algorithm: Animation

Implementation
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