

Topics in Large Data Analysis and Visualization (CS677)

Soumya Dutta, Preeti Malakar Department of Computer Science and Engineering Indian Institute of Technology Kanpur (IITK) email: {soumyad, pmalakar}@cse.iitk.ac.in

Acknowledgements

 Some of the slides are adapted from the excellent course materials made available by: Prof. Klaus Mueller, Prof. Tamara Munzner, and Prof. Han-Wei Shen

Scientific Visualization (SciVis)

- Scientific visualization: The use of computers or techniques for comprehending data or to extract knowledge from the results of simulations, computations, or measurements
- Scientific visualization is the formal name given to the field in computer science that encompasses
 - data representation and processing algorithms
 - visual representations
 - user interface
- Relatively (new) domain of research
 - ~ 36 years
 - Formal inception in 1987 by US NSF as "Visualization in Scientific Computing" by McCormick et al.

Scientific Visualization (SciVis)

- Scientific data has an implied spatial layout
- With scientific visualization
 - Techniques can exploit the spatial properties of the information (meshes, grids, vectors, tensors, etc.)
 - Utilize the three-dimensional capabilities of today's graphics engines to help visually present their analysis

Data Representation & Scientific Data Model

Data Representation

- Scientific data is Continuous in nature
 - Measure physical quantities that are studied by various scientific and engineering disciplines, such as physics, chemistry, mechanics, or engineering
 - Examples: pressure, temperature, velocity, density, etc.
- In practice, such data is sampled in a discrete form in computers
 - Representation
 - Manipulation
 - Analysis
 - Visualization

Scientific Dataset

Augural steam

- A scientific dataset is a related collection of data
 - With an attached spatial context (e.g., a grid)
 - Captures all relevant characteristics of a data collection
- Discrete scientific dataset:

Scientific Dataset

- Typically, a discrete dataset is sampled from a continuous domain into a grid/mesh structure
 - A grid is a set of cells, which are defined by a set of sample points, referred to as the **Geometry information**
 - The connectivity between the points are referred to as the **Topology**
 - Each (grid) point can have multiple attached Attributes
- Attributes can be of various types
 - Scalar, Vector, Tensor etc.
- By using the grid structure and using a reconstruction technique, data values at any point can be computed which gives us a way to <u>approximately</u> reconstruct the continuous data
 - A typical reconstruction method is **interpolation**

Scientific Dataset: Various Cell Types n-1 0 n (a) Vertex (b) Polyvertex (c) Line (d) Polyline (n lines) n+13 0 (f) Triangle strip (*n* triangles) (g) Quadrilateral (e) Triangle n-2 n-1 x_i (h) Pixel (i) Polygon (n points) (j) Tetrahedron ` --01 0 Ζ \sum_{x}^{y} 3 ; 2 (k) Hexahedron (1) Voxel (m) Wedge

IITK C677: Topics in Large Data Analysis and Visualization

Cell Types

- Code can be found: <u>https://kitware.github.io/vtk-</u> <u>examples/site/Python/GeometricObje</u> <u>cts/LinearCellDemo/</u>
- Written using a Visualization library called <u>Visualization Toolkit (VTK)</u>
 - https://vtk.org/
 - You can use VTK in your assignment

Scientific Dataset: Grid Types

- Uniform Grid
- Rectilinear Grid
- Structured Grid
- Unstructured Grid

A CONTRACT OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNE

Scientific Dataset: Uniform Grid

- Axis aligned box
- Sample points are equally spaced

Scientific Dataset: Rectilinear Grid

- Axis aligned box
- Sample points are nonequally spaced

	_	_						 _	4
t									t
Ι									Ι
									Ι
									Ι
									I
Γ									Ī
									I
									Ι
									I
									Ī
									I
									I
Ŧ									ŧ

Scientific Dataset: Structured Grid

- Allow explicit placement of every sample point
- Yet preserve the matrix-like ordering
- Structured grids can be seen as a deformation of uniform grids

Scientific Dataset: Unstructured Grid

- Allow us to define both the sample points and cells explicitly
- Different cell types can be mixed
- Connectivity is explicitly specified

Linear Interpolation for Scientific Data

Why Interpolation?

- Most visualization algorithms have to deal with discrete data
 - Data attributes that are defined at the cell vertices

Why Interpolation? ParaView Demo

Linear Interpolation (LERP)

• Linear interpolation (lerp): connecting two points with a straight line in the function plot

Linear Interpolation (LERP)

• General form:

Linear Interpolation (LERP)

• General form:

 $V_p = \Sigma w_i * v_i$ (weighted sum)

v_i : value at vertex i w_{i:} weight for v_i

- Essential information needed:
 - Cell type
 - Data value at cell corners
 - Parametric coordinates of the point in question (P)
 - Related to the position of point P in the cell

LERP in Line

- Parametric coordinate of P: $\alpha = a/(a+b)$
- Linearly interpolated value of P:

$$V_{p} = (1 - \alpha) * V_{1} + \alpha * V_{2}$$

lerp(v1,v2, α)

Lerp in Triangle

Lerp in Triangle

Lerp in Triangle

• Parametric coordinates of P: (α, β, γ)

 $\alpha = \delta A / (\delta A + \delta B + \delta C)$ $\beta = \delta B / (\delta A + \delta B + \delta C)$ $\gamma = \delta C / (\delta A + \delta B + \delta C)$ Baricentric Coordinates

• Linearly interpolated value of P: $V_A * \alpha + V_B * \beta + V_C * \gamma$

Automatical and a second secon

Lerp in Rectangle

$$\alpha = a / width;$$

$$\alpha = a / width;$$

- Value at $L_1 = \text{Lerp}(V_A, V_B, \alpha)$;
- Value at $L_2 = \text{Lerp}(V_C, V_D, \alpha)$;

$$\alpha = a / width;$$

$$\alpha$$
 = a / width; β = b / height

• Parametric coordinates of P: (α,β)

$$\alpha$$
 = a / width; β = b / height

• Linearly interpolated value of P: Lerp(V_{L1}, V_{L2}, β)

- Value at A = Bi-Lerp(V_0, V_1, V_2, V_3);
- Value at B = Bi-Lerp(V_4, V_5, V_6, V_7);

- Value at A = Bi-Lerp(V_0, V_1, V_2, V_3);
- Value at B = Bi-Lerp(V_4, V_5, V_6, V_7);

- Value at A = Bi-Lerp(V_0, V_1, V_2, V_3);
- Value at B = Bi-Lerp(V_4, V_5, V_6, V_7);
- Value at P = Lerp(A,B, PA/AB);

Isocontour Algorithm (2D and 3D)

What is an Isocontour?

- A contour is a curve(2D)/surface(3D) in a scalar field where the value of the scalar function is constant across the domain
 - Scalar fields: pressure, temperature, etc.
 - 2D: isoline
 - 3D: Isosurface
- A technique for analyzing and visualizing scalar field data or scalar functions

What is an Isocontour?

- A contour is a curve(2D)/surface(3D) in a scalar field where the value of the scalar function is constant across the domain
 - Scalar fields: pressure, temperature, etc.
 - 2D: isoline
 - 3D: Isosurface
- A technique for analyzing and visualizing scalar field data or scalar functions

What is an Isocontour?

- A contour is a curve(2D)/surface(3D) in a scalar field where the value of the scalar function is constant across the domain
 - Scalar fields: pressure, temperature, etc.
 - 2D: isoline
 - 3D: Isosurface
- A technique for analyzing and visualizing scalar field data or scalar functions

3D isocontour: Isosurface

Isocontour Demo ParaView

IITK C677: Topics in Large Data Analysis and Visualization

2D Isocontour Extraction

• Given a 2D scalar field, compute isocontour (isoline) for isovalue = C

2D Isocontour Extraction

• Given a 2D scalar field, compute isocontour (isoline) for isovalue = C

2D Isocontour Extraction

• Given a 2D scalar field, compute isocontour (isoline) for isovalue = C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- \bigcirc Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- \bigcirc Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- Value < C

- Given a 2D scalar field, compute isocontour (isoline) for isovalue = C
- This is usually done in a cell-by-cell manner using Marching Squares algorithm

- Value > C
- Value < C

Isocontour in a 2D Cell

• Finding Isocontour in a cell is an inverse problem of value interpolation

interpolation

• Finding Isocontour in a cell is an inverse problem of value

Isocontouring by Linear Interpolation

• Compute isocontour within a cell based on linear interpolation

- Identify edges that are 'zero crossing'
 - Values at the two end points are greater (+) and smaller (-) than the contour value
- Calculate the positions of **P** in those edges
- Connect the points with a line

Step 1: Identify Edges

- Edges that have values greater (+) and less (-) than the contour values must contain a point P that has f(p) = C
 - This is based on the assumption that values vary linearly and continuously across the edge

Step 2: Compute Intersection

 The intersection point f(p) = C on the edge can be computed by linear interpolation

$$\frac{d1/d2}{d1/d2} = (v1-C) / (C - v2)$$

$$p = (v1-C) / (v1 - v2) * (p2 - p1) = (v1-C) / (v1 - v2)$$

$$p = (v1-C) / (v1 - v2) * (p2 - p1) + p1$$

$$f(p1) = v1 \quad p \qquad f(p2) = v2$$

$$d1 \qquad d2$$

Step 3: Connect the Dots

• Based on the principle of linear interpolation, all points along the line **P4P5** have values equal to C (isovalue)

Repeat Step1 – Step 3 for all cells

Isocontour Cases

• How many ways can an isocontour intersect a rectangular cell?

- The value at each vertex can be either greater or less than the contour value
- So, there are 2 x 2 x 2 x 2 = 16 cases

IITK C677: Topics in Large Data Analysis and Visualization

Putting it All Together

- 2D Isocontouring algorithm for square meshes:
 - Process one cell at a time
 - Compare the values at 4 vertices with the contour value C and identify intersected edges
 - Linearly interpolate along the intersected edges
 - Connect the interpolated points together

3D Isocontour: Isosurface

- The 2D algorithm extends naturally to 3D where the data will have 3D cells
- Identify 'active cells': cells that intersect with the Isosurface
- Linear interpolation along edges in active cells
- Compute surface patches within each cell based on the edges that have intersected with the Isosurface

3D Isocontour: Cube/Rectangular Cells

With 8 vertices in a cell, each having a value greater or smaller than the contour value, there can be 2^{8 =} 256 possible cases

Cube/Rectangular cell

3D Isocontour: Cube/Rectangular Cells

With 8 vertices in a cell, each having a value greater or smaller than the contour value, there can be 2^{8 =} 256 possible cases

Cube/Rectangular cell

But the total number of unique topological cases is much less than 256

3D Isosurface Unique Cases

• 15 Topologically Unique Cases

Marching Cubes Algorithm

- Lorensen and Cline in 1987
- Mark each cell vertex with a bit
 - V_i is 1 if value > C (C=isovalue)
 - V_i is 0 if value < C
- Each cell has an index mapped to a value ranged [0,255]

Marching Cubes Algorithm

- Based on the values at the vertices, map the cell to one of the 15 cases
- Perform a table lookup to see what edges have intersections

Index intersection edges

0	e1, e3, e5
1	
2	
3	
	• • •
14	

Marching Cubes Algorithm

- Perform linear interpolation to compute the intersection points at the edges
- Connect the points to form surface patches
- Sequentially scan through the cells row by row, layer by layer

Marching Cubes Algorithm: Animation

Implementation

