
CS677: Lecture 3

Introduction to Parallelization

August 6, 2024



Logistics

• Office hours

– Instructors – by appointment or after class

– TAs - Webpage 
https://www.cse.iitk.ac.in/users/cs677/pages/tas.html

• Group formation

– Email by August 9 (hard deadline)

– Include names, roll numbers, email-ids

– Send to nitesht@cse
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https://www.cse.iitk.ac.in/users/cs677/pages/tas.html


Parallelism Everywhere

Source: amazon.com



Why Parallel?

Current population of India is estimated at 
1,442,945,809 people at mid year according to UN data.

Task: Find the average age (or any statistics) of Indians

Time (1 human): > 40 years

Time (1 CPU): 10 s

Time (2 CPUs): 5 s

Time (4 CPUs): 3 s



Why Fast?
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Disaster Prediction
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Source: imd.gov.in

Source: thehindu.com



Parallelism

A parallel computer is a collection of processing 
elements that communicate and cooperate to solve 
large problems fast.

– Almasi and Gottlieb (1989)
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Basic Computing Unit

CPU/Core
Memory

Processing unit
Intel Core i7 

(Courtesy: www.intel.com)



Multicore Era

Single core
single chip

Multiple cores 
single chip

Single core 
multiple chips

Multiple cores 
multiple chips

Intel 4004 
(1971)

Cray X-MP
(1982)

Hydra
(1996)

IBM POWER4
(2001)

CPU
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Moore’s Law

Number of CPU cores per 
node increased

Gordon Moore

[Source: Wikipedia]
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System – Simplified View
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CPU cores

Memory

Fast Memory

DISK



Parallel Computing

DISK

DISK DISK

DISK



Supercomputer/Cluster/Data Center
Network is the backbone for data communication



Parallel Computer

Compute nodes



top500.org (Jun’24)
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~ $600 million
~ 7300 sq. ft.
~ 22 MW power
~ 23000 L water 



Discretization

Gridded mesh for a global model 
[Credit: Tompkins, ICTP] 
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Surface area of Earth: ~501 
million sq. km.

Credit: World Economic Forum 



Compute nodes

Domain Decomposition

Surface area of India: ~3.2 million sq. km.



Data Bottleneck

Compute nodes

Storage

Read/write

Congestion

Example: ‘Age’ is data



Average – Serial vs. Parallel

Parallel

for i = 1 to N/P

sum += a[i]

collect sums and compute                  

Serial

for i = 1 to N

sum += a[i]

avg = sum/N

P
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Parallel Computer

A parallel computer is a collection of processing 
elements that communicate and cooperate to solve 
large problems fast.

– Almasi and Gottlieb (1989)
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Parallel Average

0 1        2        3 

Memory

Process

Core

for i = 0 to N/P

sum += a[i]

for i = N/P to 2N/P

sum += a[i]

for i = 2N/P to 3N/P

sum += a[i]

for i = 3N/P to N

sum += a[i]
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Parallel Code Example

// local computation at every process/thread

for i = N/P * id ; i < N/P * (id+1) ; i++

localsum += a[i] 

// collect localsum, add up in one of the ranks 
and compute average

23



Performance Measure

• Speedup

• Efficiency

Time ( 1 processor)

Time ( P processors)
SP =

SP

P
EP =
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Parallel Performance (Parallel Sum)

Parallel efficiency of summing 10^7 doubles

#Processes Time (sec) Speedup Efficiency

1 0.025 1 1.00

2 0.013 1.9 0.95

4 0.010 2.5 0.63

8 0.009 2.8 0.35

12 0.007 3.6 0.30
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Ideal Speedup

Processors

Speedup Linear

Sublinear

Superlinear
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Scalability Bottleneck

Performance of weather simulation application
27



Programming
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Parallel Programming Models

Libraries MPI, TBB, Pthread, OpenMP, …

New languages Haskell, X10, Chapel, …

Extensions Coarray Fortran, UPC, Cilk, OpenCL, …

• Shared memory

– OpenMP, Pthreads, CUDA, …

• Distributed memory

– MPI, UPC, …

• Hybrid

– MPI + OpenMP, MPI + CUDA
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Sharing Data

30



31

Process/
thread

Core

Cache

Parallel Programming Models

Shared memory programming – OpenMP, Pthreads
Distributed memory programming – MPI 



Shared Memory Programming
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• Shared address space 

• Time taken to access certain memory words is longer (NUMA)

• Programming paradigms – Pthreads, OpenMP

• Need to worry about concurrent access

CPU cores

Memory



Threads

33From Tim Mattson’s slides



OpenMP (Open Multiprocessing)

• Standard for shared memory programming

– Compiler directives

– Runtime routines

– Environment variables

• OpenMP Architecture Review Board

• First released in Nov’97 

• Current version 5.1 (Nov’20)
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OpenMP Example

• Thread-based

• Fork-join model
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#pragma omp parallel  //fork
{

} //join

Spawn a 
default number 

of threads



OpenMP
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$ gcc –fopenmp –o foo foo.c



OpenMP
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OpenMP
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Output
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OpenMP – Parallel Sum
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Work on distinct data concurrently



OpenMP Timing

double stime = omp_get_wtime();

#pragma omp parallel

{

…

}

double etime = omp_get_wtime();
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Multiple Systems

42

Process

Core

Cache



Distributed Memory Systems

Cluster

Code

Node

• Networked systems
• Distributed memory

• Local memory
• Remote memory

• Parallel file system
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64 – 192 GB RAM/node



MPI (Message Passing Interface)

• Standard for message passing in a distributed 
memory environment (most widely used 
programming model in supercomputers)

• Efforts began in 1991 by Jack Dongarra, Tony 
Hey, and David W. Walker 

• MPI Forum formed in 1993

– Version 1.0: 1994

– Version 4.0: 2021

44



Process - Distinct Address Space
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Memory

Process

Core

Local data Local data Local data Local data



From N. Karanjkar’s slides
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Multiple Processes on a Single Node
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Multiple Processes on Multiple Nodes

Node 1

Node 2



Communication using Messages
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Memory

Process

Core

Local data Local data Local data Local data

for i = 0 to N/P

sum += a[i]

for i = N/P to 2N/P

sum += a[i]

for i = 2N/P to 3N/P

sum += a[i]

for i = 3N/P to N

sum += a[i]



Communication using Messages
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Memory

Process

Core

Instruction 1

Instruction 2

…

Instruction 1

Instruction 2

…

Instruction 1

Instruction 2

…

Instruction 1

Instruction 2

…
SIMD

Local data Local data Local data Local data



Message Passing
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Process 0 Process 1

Time



MPI Programming
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MPI Programming
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mpicc -o program.x program.c



Communication using Messages
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Memory

Process

Core

Local data Local data Local data Local data

for i = 0 to N/P

sum += a[i]

for i = N/P to 2N/P

sum += a[i]

for i = 2N/P to 3N/P

sum += a[i]

for i = 3N/P to N

sum += a[i]

for i = N/P * rank ; i < N/P * (rank+1) ; i++

localsum += a[i]

Collect localsum, add up at one of the ranks



Communication using Messages

54

Memory

Process

Core



Simplest Communication Primitives
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• MPI_Send

• MPI_Recv



MPI Programming
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int MPI_Send (const void *buf, int count, MPI_Datatype datatype, 
int dest, int tag, MPI_Comm comm) 

int MPI_Recv (void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status) 

SENDER RECEIVER



MPI Programming
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MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

// Sender process
if (myrank == 0) /* code for process 0 */
{

strcpy (message,"Hello, there");
MPI_Send (message, strlen(message)+1, MPI_CHAR, 1, 99, 

MPI_COMM_WORLD);
}

// Receiver process
else if (myrank == 1)  /* code for process 1 */
{

MPI_Recv (message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, 
&status);

printf ("received :%s\n", message);
}



MPI – Parallel Sum
Assume the data array resides in the memory of process 0 initially
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MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

// Sender process
if (myrank == 0) /* code for process 0 */
{
for (int rank=1; rank<SIZE ; rank++) {
start = rank*N/size*sizeof(int);
MPI_Send (data+start, N/size, MPI_INT, rank, 99, MPI_COMM_WORLD);

}
}
else /* code for processes 1 … SIZE */
{
MPI_Recv (data, N/size, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);

}



MPI Timing

double stime = MPI_Wtime();

…

… 

…

double etime = MPI_Wtime();
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Performance vs. Accuracy
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Interpolation
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Interpolation
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Range/Query
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Query on a Million Processes

Compute nodes



Unstructured Mesh

Source: COMSOL

65



Unstructured Mesh
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Obayashi et al., Multi-objective Design Exploration Using Efficient Global Optimization



Clustering Example
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Image source: stanford.edu



Cosmological Simulation
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[Credit: ANL] 



Kaggle.com
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There are initially 64000 particles. At end of the simulation there are 63970. 
This is because some particles escape the cluster.

https://www.kaggle.com/datasets/mariopasquato/star-cluster-simulations

https://www.kaggle.com/datasets/mariopasquato/star-cluster-simulations


Performance and Speedup

70

Yang et al., High performance data clustering: a comparative analysis of performance for GPU, RASC, 
MPI, and OpenMP implementations, Journal of Supercomputing 2013.



MPI Implementations

“The MPI standard includes point-to-point message-passing, 

collective communications, group and communicator 

concepts, process topologies, environmental management, 

process creation and management, one-sided 

communications, extended collective operations, external 

interfaces, I/O, some miscellaneous topics, and a profiling 

interface.” – MPI report

• MPICH (ANL)

• MVAPICH (OSU)

• OpenMPI

• Intel MPI

• Cray MPI 71

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


Programming

• Shell scripts (e.g. bash)

• ssh basics
– E.g. ssh –X

– …

• Mostly in C/C++

• Compilation, Makefiles, ...

• Linux environment variables
– PATH

– LD_LIBRARY_PATH

– …
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H.W.: Install MPI on your Laptop 

• Linux or Linux VM on Windows

– apt/snap/yum/brew

• Windows

– No support

• https://www.mpich.org/documentation/guides/
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https://www.mpich.org/documentation/guides/


References for MPI

• (CSA) DE Culler, JP Singh and A Gupta, Parallel Computer Architecture: 
A Hardware/Software Approach Morgan-Kaufmann, 1998.

• (GGKK) A Grama, A Gupta, G Karypis, and V Kumar, Introduction to 
Parallel Computing. 2nd Ed., Addison-Wesley, 2003.

• (MPI) Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. 
Walker and Jack Dongarra, MPI - The Complete Reference, Second 
Edition, Volume 1, The MPI Core.

• (GLS) William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: 
portable parallel programming with the message-passing interface, 3rd 
Ed., Cambridge MIT Press, 2014.

• (PP) Peter S Pacheco, An Introduction to Parallel Programming, Morgan 
Kaufmann, 2011.
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Thank You
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