
CS677: Lecture 3

Introduction to Parallelization

August 6, 2024

Logistics

• Office hours

– Instructors – by appointment or after class

– TAs - Webpage
https://www.cse.iitk.ac.in/users/cs677/pages/tas.html

• Group formation

– Email by August 9 (hard deadline)

– Include names, roll numbers, email-ids

– Send to nitesht@cse

2

https://www.cse.iitk.ac.in/users/cs677/pages/tas.html

Parallelism Everywhere

Source: amazon.com

Why Parallel?

Current population of India is estimated at
1,442,945,809 people at mid year according to UN data.

Task: Find the average age (or any statistics) of Indians

Time (1 human): > 40 years

Time (1 CPU): 10 s

Time (2 CPUs): 5 s

Time (4 CPUs): 3 s

Why Fast?

5

Disaster Prediction

6

Source: imd.gov.in

Source: thehindu.com

Parallelism

A parallel computer is a collection of processing
elements that communicate and cooperate to solve
large problems fast.

– Almasi and Gottlieb (1989)

7

Basic Computing Unit

CPU/Core
Memory

Processing unit
Intel Core i7

(Courtesy: www.intel.com)

Multicore Era

Single core
single chip

Multiple cores
single chip

Single core
multiple chips

Multiple cores
multiple chips

Intel 4004
(1971)

Cray X-MP
(1982)

Hydra
(1996)

IBM POWER4
(2001)

CPU

9

Moore’s Law

Number of CPU cores per
node increased

Gordon Moore

[Source: Wikipedia]

11

System – Simplified View

12

CPU cores

Memory

Fast Memory

DISK

Parallel Computing

DISK

DISK DISK

DISK

Supercomputer/Cluster/Data Center
Network is the backbone for data communication

Parallel Computer

Compute nodes

top500.org (Jun’24)

16

~ $600 million
~ 7300 sq. ft.
~ 22 MW power
~ 23000 L water

Discretization

Gridded mesh for a global model
[Credit: Tompkins, ICTP]

17

Surface area of Earth: ~501
million sq. km.

Credit: World Economic Forum

Compute nodes

Domain Decomposition

Surface area of India: ~3.2 million sq. km.

Data Bottleneck

Compute nodes

Storage

Read/write

Congestion

Example: ‘Age’ is data

Average – Serial vs. Parallel

Parallel

for i = 1 to N/P

sum += a[i]

collect sums and compute

Serial

for i = 1 to N

sum += a[i]

avg = sum/N

P

20

Parallel Computer

A parallel computer is a collection of processing
elements that communicate and cooperate to solve
large problems fast.

– Almasi and Gottlieb (1989)

21

Parallel Average

0 1 2 3

Memory

Process

Core

for i = 0 to N/P

sum += a[i]

for i = N/P to 2N/P

sum += a[i]

for i = 2N/P to 3N/P

sum += a[i]

for i = 3N/P to N

sum += a[i]

22

Parallel Code Example

// local computation at every process/thread

for i = N/P * id ; i < N/P * (id+1) ; i++

localsum += a[i]

// collect localsum, add up in one of the ranks
and compute average

23

Performance Measure

• Speedup

• Efficiency

Time (1 processor)

Time (P processors)
SP =

SP

P
EP =

24

Parallel Performance (Parallel Sum)

Parallel efficiency of summing 10^7 doubles

#Processes Time (sec) Speedup Efficiency

1 0.025 1 1.00

2 0.013 1.9 0.95

4 0.010 2.5 0.63

8 0.009 2.8 0.35

12 0.007 3.6 0.30

25

Ideal Speedup

Processors

Speedup Linear

Sublinear

Superlinear

26

Scalability Bottleneck

Performance of weather simulation application
27

Programming

28

Parallel Programming Models

Libraries MPI, TBB, Pthread, OpenMP, …

New languages Haskell, X10, Chapel, …

Extensions Coarray Fortran, UPC, Cilk, OpenCL, …

• Shared memory

– OpenMP, Pthreads, CUDA, …

• Distributed memory

– MPI, UPC, …

• Hybrid

– MPI + OpenMP, MPI + CUDA

29

Sharing Data

30

31

Process/
thread

Core

Cache

Parallel Programming Models

Shared memory programming – OpenMP, Pthreads
Distributed memory programming – MPI

Shared Memory Programming

32

• Shared address space

• Time taken to access certain memory words is longer (NUMA)

• Programming paradigms – Pthreads, OpenMP

• Need to worry about concurrent access

CPU cores

Memory

Threads

33From Tim Mattson’s slides

OpenMP (Open Multiprocessing)

• Standard for shared memory programming

– Compiler directives

– Runtime routines

– Environment variables

• OpenMP Architecture Review Board

• First released in Nov’97

• Current version 5.1 (Nov’20)

34

OpenMP Example

• Thread-based

• Fork-join model

35

#pragma omp parallel //fork
{

} //join

Spawn a
default number

of threads

OpenMP

36
$ gcc –fopenmp –o foo foo.c

OpenMP

37

OpenMP

38

Output

39

OpenMP – Parallel Sum

40

Work on distinct data concurrently

OpenMP Timing

double stime = omp_get_wtime();

#pragma omp parallel

{

…

}

double etime = omp_get_wtime();

41

Multiple Systems

42

Process

Core

Cache

Distributed Memory Systems

Cluster

Code

Node

• Networked systems
• Distributed memory

• Local memory
• Remote memory

• Parallel file system

43

64 – 192 GB RAM/node

MPI (Message Passing Interface)

• Standard for message passing in a distributed
memory environment (most widely used
programming model in supercomputers)

• Efforts began in 1991 by Jack Dongarra, Tony
Hey, and David W. Walker

• MPI Forum formed in 1993

– Version 1.0: 1994

– Version 4.0: 2021

44

Process - Distinct Address Space

45

Memory

Process

Core

Local data Local data Local data Local data

From N. Karanjkar’s slides
46

Multiple Processes on a Single Node

47

Multiple Processes on Multiple Nodes

Node 1

Node 2

Communication using Messages

48

Memory

Process

Core

Local data Local data Local data Local data

for i = 0 to N/P

sum += a[i]

for i = N/P to 2N/P

sum += a[i]

for i = 2N/P to 3N/P

sum += a[i]

for i = 3N/P to N

sum += a[i]

Communication using Messages

49

Memory

Process

Core

Instruction 1

Instruction 2

…

Instruction 1

Instruction 2

…

Instruction 1

Instruction 2

…

Instruction 1

Instruction 2

…
SIMD

Local data Local data Local data Local data

Message Passing

50
Process 0 Process 1

Time

MPI Programming

51

MPI Programming

52

mpicc -o program.x program.c

Communication using Messages

53

Memory

Process

Core

Local data Local data Local data Local data

for i = 0 to N/P

sum += a[i]

for i = N/P to 2N/P

sum += a[i]

for i = 2N/P to 3N/P

sum += a[i]

for i = 3N/P to N

sum += a[i]

for i = N/P * rank ; i < N/P * (rank+1) ; i++

localsum += a[i]

Collect localsum, add up at one of the ranks

Communication using Messages

54

Memory

Process

Core

Simplest Communication Primitives

55

• MPI_Send

• MPI_Recv

MPI Programming

56

int MPI_Send (const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv (void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

SENDER RECEIVER

MPI Programming

57

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

// Sender process
if (myrank == 0) /* code for process 0 */
{

strcpy (message,"Hello, there");
MPI_Send (message, strlen(message)+1, MPI_CHAR, 1, 99,

MPI_COMM_WORLD);
}

// Receiver process
else if (myrank == 1) /* code for process 1 */
{

MPI_Recv (message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD,
&status);

printf ("received :%s\n", message);
}

MPI – Parallel Sum
Assume the data array resides in the memory of process 0 initially

58

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

// Sender process
if (myrank == 0) /* code for process 0 */
{
for (int rank=1; rank<SIZE ; rank++) {
start = rank*N/size*sizeof(int);
MPI_Send (data+start, N/size, MPI_INT, rank, 99, MPI_COMM_WORLD);

}
}
else /* code for processes 1 … SIZE */
{
MPI_Recv (data, N/size, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);

}

MPI Timing

double stime = MPI_Wtime();

…

…

…

double etime = MPI_Wtime();

59

Performance vs. Accuracy

60

Interpolation

61

Interpolation

62

Range/Query

63

Query on a Million Processes

Compute nodes

Unstructured Mesh

Source: COMSOL

65

Unstructured Mesh

66

Obayashi et al., Multi-objective Design Exploration Using Efficient Global Optimization

Clustering Example

67
Image source: stanford.edu

Cosmological Simulation

68

[Credit: ANL]

Kaggle.com

69
There are initially 64000 particles. At end of the simulation there are 63970.
This is because some particles escape the cluster.

https://www.kaggle.com/datasets/mariopasquato/star-cluster-simulations

https://www.kaggle.com/datasets/mariopasquato/star-cluster-simulations

Performance and Speedup

70

Yang et al., High performance data clustering: a comparative analysis of performance for GPU, RASC,
MPI, and OpenMP implementations, Journal of Supercomputing 2013.

MPI Implementations

“The MPI standard includes point-to-point message-passing,

collective communications, group and communicator

concepts, process topologies, environmental management,

process creation and management, one-sided

communications, extended collective operations, external

interfaces, I/O, some miscellaneous topics, and a profiling

interface.” – MPI report

• MPICH (ANL)

• MVAPICH (OSU)

• OpenMPI

• Intel MPI

• Cray MPI 71

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Programming

• Shell scripts (e.g. bash)

• ssh basics
– E.g. ssh –X

– …

• Mostly in C/C++

• Compilation, Makefiles, ...

• Linux environment variables
– PATH

– LD_LIBRARY_PATH

– …

72

H.W.: Install MPI on your Laptop

• Linux or Linux VM on Windows

– apt/snap/yum/brew

• Windows

– No support

• https://www.mpich.org/documentation/guides/

73

https://www.mpich.org/documentation/guides/

References for MPI

• (CSA) DE Culler, JP Singh and A Gupta, Parallel Computer Architecture:
A Hardware/Software Approach Morgan-Kaufmann, 1998.

• (GGKK) A Grama, A Gupta, G Karypis, and V Kumar, Introduction to
Parallel Computing. 2nd Ed., Addison-Wesley, 2003.

• (MPI) Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W.
Walker and Jack Dongarra, MPI - The Complete Reference, Second
Edition, Volume 1, The MPI Core.

• (GLS) William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI:
portable parallel programming with the message-passing interface, 3rd
Ed., Cambridge MIT Press, 2014.

• (PP) Peter S Pacheco, An Introduction to Parallel Programming, Morgan
Kaufmann, 2011.

74

Thank You

75

