Learning the Mixture of Gaussians

Prithwijit Guha
prithwijit.guha@gmail.com

1 Learning Gaussian Mixture Models

The GMM $\mathcal{G}(t)=\left\{\mathcal{C}_{i}(t)\right\}_{i=1}^{m}$ is a finite set of clusters of size m, where a cluster at the $t^{t h}$ instant is given by,

$$
\begin{equation*}
\mathcal{C}_{i}(t)=\left\{\mu_{i}(t), \Sigma_{i}(t), \pi_{i}(t)\right\} \tag{1}
\end{equation*}
$$

Where, $\mu_{i}(t), \Sigma_{i}(t)$ and $\pi_{i}(t)$ are the respective mean vector, co-variance matrix and the mixing parameter of $\mathcal{C}_{i}(t)$ at the $t^{t h}$ instant.

1.1 Initialization

The GMM is initialized with a single Cluster $C_{1}(1)=\left\{X_{1}, \Sigma_{\text {init }}, 1.0\right\}$, where X_{1} is the data vector at $t=1$ and $\Sigma_{\text {init }}$ is the initial co-variance matrix whose values are assigned from the domain knowledge.

1.2 Update

In this sub-section we deduce the equations for updating the GMM $\mathcal{G}(t-1)$ learned till the $(t-1)^{t h}$ instant to $\mathcal{G}(t)$ with the current data vector X_{t}. We consider the data vector to be belonging to the cluster $\mathcal{C}_{j}(t-1)$, if $\left(X_{t}-\mu_{j}(t-\right.$ 1) $)^{T} \Sigma_{j}(t-1)^{-1}\left(X_{t}-\mu_{j}(t-1)\right)<n \lambda$, where λ is a user defined threshold and n is the dimension of the data vector $\left(X \in \mathcal{R}^{n}\right)$. Now, we consider the following cases.

In the first case, we assume that $\exists j: X_{t} \in \mathcal{C}_{j}(t-1)$. Let, $N_{i}(t)$ be the number of data vectors that has been assigned to $\mathcal{C}_{i}(t)$ till the $t^{t h}$ instant. Thus, we have,

$$
\begin{align*}
\pi_{i}(t) & =\frac{N_{i}(t)}{t} \\
& =\frac{(t-1) \pi_{i}(t-1)+\delta(i-j)}{t} ; X_{t} \in \mathcal{C}_{j}(t-1) \\
& =\left(1-\alpha_{t}\right) \pi_{i}(t-1)+\alpha_{t} \delta(i-j) ; \alpha_{t}=\frac{1}{t} \tag{2}
\end{align*}
$$

Now, we update the mean and co-variance in $\mathcal{C}_{j}(t-1)$ only. To update the mean, we proceed as follows.

$$
\begin{align*}
\mu_{j}(t) & =\frac{1}{N_{j}(t)} \sum_{X \in \mathcal{C}_{j}(t)} X \\
& =\frac{N_{j}(t-1) \mu_{j}(t-1)+X_{t}}{t \pi_{j}(t)} \\
& =\frac{\left(t \pi_{j}(t)-1\right) \mu_{j}(t-1)+X_{t}}{t \pi_{j}(t)} \\
& =\left(1-\beta_{j}(t)\right) \mu_{j}(t-1)+\beta_{j}(t) X_{t}, \beta_{j}(t)=\frac{\alpha_{t}}{\pi_{j}(t)} \tag{3}
\end{align*}
$$

Similarly, we can update the co-variance matrix. From definition, we can compute the co-variance matrix at the $t^{t h}$ instant as,

$$
\begin{align*}
\Sigma_{j}(t) & =\frac{1}{N_{j}(t)} \sum_{X \in \mathcal{C}_{j}(t)}\left(X-\mu_{j}(t)\right)\left(X-\mu_{j}(t)\right)^{T} \\
& =\frac{1}{N_{j}(t)} \sum_{X \in \mathcal{C}_{j}(t)} X X^{T}-\mu_{j}(t) \mu_{j}(t)^{T} \tag{4}
\end{align*}
$$

By further manipulating equation 4 , we have the following.

$$
\begin{aligned}
N_{j}(t)\left(\Sigma_{j}(t)+\mu_{j}(t) \mu_{j}(t)^{T}\right) & =\sum_{X \in \mathcal{C}_{j}(t)} X X^{T}+X_{t} X_{t}^{T} \\
& =N_{j}(t-1)\left(\Sigma_{j}(t-1)+\mu_{j}(t-1) \mu_{j}(t-1)^{T}\right)+X_{t} X_{t}^{T} \\
\Sigma_{j}(t)+\mu_{j}(t) \mu_{j}(t)^{T} & =\frac{N_{j}(t-1)}{N_{j}(t)}\left(\Sigma_{j}(t-1)+\mu_{j}(t-1) \mu_{j}(t-1)^{T}\right)+\frac{1}{N_{j}(t)} X_{t} X_{t}^{T} \\
& \left.=\left(1-\beta_{j}(t)\right)\left(\Sigma_{j}(t-1)+\mu_{j}(t-1) \mu_{j}(t-1)^{T}\right)+\beta_{j}(t) X_{t} X_{t}^{T}\right)
\end{aligned}
$$

Now, by substituting the update rule for $\mu_{j}(t)$ in the left hand side of 5 , it can be shown that the updated co-variance matrix is given by,

$$
\begin{equation*}
\Sigma_{j}(t)=\left(1-\beta_{j}(t)\right)\left[\Sigma_{j}(t-1)+\beta_{j}(t)\left\{X_{t}-\mu_{j}(t-1)\right\}\left\{X_{t}-\mu_{j}(t-1)\right\}^{T}\right] \tag{6}
\end{equation*}
$$

In the second case, it may happen that $\forall j X_{t} \notin \mathcal{C}_{j}(t-1)$. In such cases, we intialize a new cluster $\mathcal{C}_{k}(t)=\left\{X_{t}, \Sigma_{\text {init }}, \alpha_{t}\right\}$. If $\mathcal{G}(t-1)$ contains less than m clusters, then we add $\mathcal{C}_{k}(t)$ to it. Otherwise, $\mathcal{C}_{k}(t)$ replaces the cluster with the lowest weight. More so, in this particualr case, the mixing parameters of all other clusters are penalized as $\pi_{i}(t)=\left(1-\alpha_{t}\right) \pi_{i}(t-1), i \neq k$.

