
Section: Computer Science

Rule Based Grapheme to Phoneme Mapping for
Hindi Speech Synthesis∗

Monojit Choudhury

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

1. Introduction

Speech is one of the most vital forms of communication in our everyday life. On
the contrary, the dependence of human computer interaction on written texts and images,
makes the use of computers impossible for visually and physically impaired and illiterate
masses. Automatic speech generation from natural language sentences can overcome
these obstacles. This work is part of a larger project aiming at developing communication
tools in Indian languages for the visually handicapped and cerebral palsy affected
children.

Formally, a Text to Speech (TTS) [1,2] system converts a written text to speech or
a sound file. The goal of a TTS system is to provide intelligible and natural speech. A TTS
system consists of a Natural Language Processing (NLP) module and a Digital Signal
Processing (DSP) module. The NLP module converts the text, that is the graphemes, to a
string of phonemes [3,4]. It also encodes the intonation and prosodic information in the
output string. In a concatenative synthesis approach, the DSP module obtains the sound
files from an acoustic inventory corresponding to the string of phonemes or diphones1
and concatenates them. Finally, it modulates the sound according to the intonation and
prosodic information. Since in almost all languages, we hardly pronounce what we write,
some linguistic analysis is necessary for the intelligibility of the speech.

This paper describes a rule based grapheme to phoneme mapping for Hindi.
Section 2 introduces the different issues involved in Hindi phonology which affect the
grapheme to phoneme mapping. The next three sections describe in depth algorithms for
three most important subproblems in Hindi phonology viz. schwa deletion, marking the
syllable boundaries and pronunciation of the diacritical marks ‘˙’ (anusvara) and ÄÄ .
Section 6 concludes this paper and discusses the implementation issues.

2. Issues in Hindi Phonology

Having its root in Sanskrit, which is phonetically perfect (i.e. there is very little or
almost no discrepancy between written text and pronunciation), Hindi is pronounced
almost as it is written. Going by the Optimality Theory [5], this can be restated as “In
Sanskrit and Hindi the faithfulness constraints are ranked higher than the markedness
constraints”. Even then there are several issues in Hindi phonology that needs to be

∗ This work has been done under the supervision of Prof. Anupam Basu, CSE, IIT Kharagpur and was
partly supported by Media Lab Asia project funding.
1 The acoustic inventory may store phonemes, diphones, triphones, or even syllables. This partly depends
on the language and partly on the technique chosen for synthesis.

sorted out before we can construct a grapheme to phoneme converter for Hindi, some of
which are listed below.

• Schwa deletion
• Sound of anusvara and chandra-bindu
• Syllable boundary marking
• Context dependent pronunciation of schwa
• Special sounds for conjugates like j~na [YÉ] and vowel R^i [@]

Each consonant in written Hindi is associated with an “inherent” schwa2, which is

not explicitly represented. Other vowels are overtly written diacritically or non-
diacritically around the consonant. The problem is that schwa is sometimes pronounced
and sometimes not. For example, in the word dha.DakaneM [vÉcExÉå, dhəɽ.kən.ẽ, noun.
heart-beats], the schwa following .D is deleted in the pronunciation. Schwa deletion
along with the word-morphology determines the syllable boundaries in a word and hence
is a vital part of Hindi phonology. Just to illustrate how improper schwa deletion can
really render the speech incomprehensible, compare the above word with dha.Dakane
[vÉcExÉä, dhə.ɽək.ne, verb. To beat (heart), with case-ending ne], where schwa following k
is deleted. Without any schwa deletion, not only will the two words sound very unnatural,
but it will also be extremely difficult for the listener to distinguish between the two.

The pronunciation of schwa is also context dependent in Hindi. For example in
the word alaga [+±ÉMÉ, ʌ.ləg, separate] the pronunciation of the first and second schwas are
different. The pronunciation of anusvara and chandra-bindu are also ambiguous in Hindi.
For example, the anusvara may be pronounced as n, N, m or ~N (both voiced and
unvoiced) depending on the context. Sometimes the anusvara only stands for nasalization
of a vowel and not a nasal consonant like in chiMTi [SÉÓ]Ò, ant].

Most of the existing Hindi TTS systems either neglect these issues and generate a
flat, unnatural and sometimes unintelligible speech by retaining all the schwas, or they go
for a dictionary based approach, which is expensive from storage point of view. Although
the problems of schwa deletion and syllable boundary determination in Hindi (and other
Indian Languages as well) have been addressed from a linguistic perspective [7], very
little work has been done on the computational aspects. The only computational model
for schwa deletion in Hindi that could be located is by B. Narsimhan et al [10]. Their
work combines Ohala’s work (1983) and morphological analysis with finite state
transducers [11,12] and cost models achieving an accuracy of 89%.

This paper presents a schwa deletion algorithm for Hindi which achieves more
than 96% accuracy. An extended algorithm, that uses word-morphology information, is
also discussed, which boosts up the performance to 99.89%. Section 4 shows how the
schwa deletion algorithm so designed can be used for syllable boundary marking using
some very simple rules. The problem of anusvara and chandra-bindu pronunciation is
dealt with next. The rules for context dependent pronunciation of schwa have not been
included in this paper. However, it is to be noted that these nuances does not affect the

2 The first vowel of Hindi alphabet, + (pronounced as ə or ʌ, but for our convenience we shall denote it as

ə only for both the contexts).

intelligibility of the speech and can be handled by proper intonation modeling of the
language. There are other issues like pronunciation of numerals and acronyms. The rules
for these are well known and will not be discussed here.

3. Algorithm for schwa deletion
 First, some of the contexts where schwa is always retained or deleted have been
identified and discussed, followed by the formal description of the algorithm, which
makes use of these contexts. Most of these contexts arise due to phonotactic constraints
and some due to syllable structure of Hindi.

1. The schwa of a syllable immediately followed by a conjugate syllable
(yuktakshara) is always retained. For example in sAphalya [ºÉÉ¡±ªÉ, sa.ɸəl.jə,
success] and AmantraNa [+É¨ÉÆjÉhÉ, a.mən.trəɳ, invitation] the schwas following ph
and m are retained.

2. If y (ªÉ) is followed by the inherent schwa and preceded by a syllable with a high

vowel such as i, I, R^i, u or U, then the schwa following y is always retained. For
example in priya [Ê|ÉªÉ, pri.jə, beloved]. On the other hand for low and medium
height vowels like a, A, e or o, the schwa following y may be deleted. For
example in Aya [+ÉªÉ, ae ̆, income].

3. Any conjugate syllable or cluster of consonants3 that ends in (i.e. the last

consonant of the cluster/syllable is) y, r, l or v, the schwa following the cluster is
retained. For example in kAvya [EÉ´ªÉ, kaw.jə, poetry], samprati [ºÉ¨|ÉÊiÉ, səm.prə.ti,

recently], ashva [+¶´É, əʃ.wə, horse] and shukla [¶ÉÖC±É, ʃuk.lə, white] the schwas
following y, r, l and v are retained.

4. The schwa preceding a full vowel4 is retained to maintain lexical distinctions. For

example in the word ba.DhaI [¤Ég<Ç, bə.ɽhəiː, carpenter] the schwa following .Dh is
retained.

5. The schwa of the first syllable is never deleted. For example, the schwas

following b in badarA [¤Én®É, bəd.ra, cloud], k in kalama [E±É¨É, kə.ləm, pen] or
shh in kShamatA [IÉ¨ÉiÉÉ, kʂəm.ta, ability] are retained.

6. If the last syllable of the word contains a schwa and contexts 1 through 5

described above for the retention of the schwa do not occur, then the schwa is to
be deleted. For example, the schwas following m in kalama, d in banda [¤ÉÆn, bənd,
closed] or k in tarka [iÉEÇ , tərk, argument] are deleted.

3 In Hindi, there can be a cluster of at most three consonants.
4 Vowels can occur in two forms – full or maatraas. E.g. in the word AnA [+ÉxÉÉ, a.na, to come], the first A
is a full vowel whereas the second one is a mAtrA

Whenever the above contexts arise, we can determine whether the schwa is to be

retained or deleted. However, if none of the context arises, we cannot conclude anything.

3.1 The Algorithm

For description of the algorithm, we shall take the help of a notation called half
(H) and full (F) sounds. We define a full sound as a consonant-vowel pair or a vowel
alone, whereas half sound as a pure consonant sound, without any vowel modulation
(mAtrA). Therefore, any vowel or a consonant followed by a vowel (mAtrA) is a full
sound, whereas a consonant followed by halant (i.e. the consonants of a conjugate
syllable or cluster, except the last one) are half sounds. Since mark (half or full) of the
consonants followed by schwa might not be known beforehand, we shall call such
consonants as unknown (U). After marking the consonants of the word according to the
rules stated above, only the consonants followed by schwas can be marked as U. The
algorithm then scans the marked word from left to right replacing each of the Us by
either F or H, depending on the two adjacent syllables5 of that particular U-marked
consonant. The basic idea here is to minimize the number of syllables in the word by
deleting as many schwas as possible without violating any phonotactic constraints, which
requires retention of those schwas which have an H-marked consonant as at least one of
its neighbors. At the end of the algorithm, schwas following the consonants marked as H
are deleted.
 The formal steps of the algorithm are described next. Figure 1 illustrates the
stepwise execution of the algorithm on the words bachapana [¤ÉSÉ{ÉxÉ, bəc.pən, childhood],
priyatama [Ê|ÉªÉiÉ¨É, pri.jə.təm, beloved] and AmantraNa.

procedure delete_schwa(DS)

 Input: word: string of alphabets (graphemes)6
 Output: input word with some of the schwas deleted.

1. Mark all the full vowels and consonants followed by vowels other than the
inherent schwas (i.e. consonants with mAtrAs) in the word as F. Mark all the
consonants immediately followed by consonants or halants (i.e. consonants of
conjugate syllables) as H. Mark all the remaining consonants, which are followed
by implicit schwas as U.

2. If in the word, y is marked U and preceded by i, I, ri, u or U mark it F (context
2).

3. If y, r, l or v are marked U and preceded by consonants marked H, then mark
them F (context 3).

5 Note that here syllable refers to akshhara which can be consonant, vowel or a consonant vowel pair. In
section 4 the syllable refers to speech units, which may or may not map to akshharas
6 In order to keep the description of the algorithm simpler, the output is also presented as a string of
graphemes instead of phonemes. After schwa deletion, grapheme to phoneme mapping for Hindi becomes
quite simple.

4. If a consonant marked U is followed by a full vowel, then mark that consonant as
F (context 4).

5. While traversing the word from left to right, if a consonant marked U is
encountered before any consonant or vowel marked F, then mark that consonant
as F (context 5).

6. If the last consonant is marked U, mark it H (context 6).
7. If any consonant marked U is immediately followed by a consonant marked H,

mark it F (context 1).
8. While traversing the word from left to right, for every consonant marked U, mark

it H if it is preceded by F and followed by F or U otherwise mark it F.
9. For all consonants marked H, if it is followed by a schwa in the original word,

then delete the schwa from the word. The resulting new word is the required
output.

end procedure delete_schwa

 Word ba-cha-pa-na p-ri-ya-ta-ma A-ma-n-t-ra-Na
 After Step

1 U--U--U--U H-F-U-U-U F-U-H-H-U-U
2 U--U--U--U H-F-F-U-U F-U-H-H-U-U
3 U--U--U--U H-F-F-U-U F-U-H-H-F-U
4 F--U--U--U H-F-F-U-U F-U-H-H-F-U
5 F--U--U--U H-F-F-U-U F-U-H-H-F-U
6 F--U--U--H H-F-F-U-H F-U-H-H-F-H
7 F--U--U--H H-F-F-U-H F-F-H-H-F-H
8.1 F--H--U--H H-F-F-F-H --
8.2 F--H--F--H -- --

 Results: 9 bach-pan pri-ya-tam A-man-traN

Figure 1 Illustration of the working of the algorithm

3.2 Morphological Analysis
 The algorithm DS may produce erroneous results for non-monomorphemic words.
For words made up of more than one morpheme as in the case of compound words,
words with affixes or inflected forms, there is a tendency to retain the sounds of the
morphemes. Therefore, given any word, it must be decomposed into stems and affixes
and the algorithm DS is to be applied to each of the morphemes individually after which
there pronunciations can be merged by following specific rules (not described here due to
maintain brevity of the paper). For example, charaNakamala [SÉ®hÉE¨É±É, cə.rəɳ.kə.məl] =>
(after morphological analysis) charaNa [foot] & kamala [lotus] => (after individual
schwa deletion) cha-raN & ka-mal => (after juxtaposition, final result) cha-raN-ka-mal.

(On the other hand, without morphological analysis, the result would have been char-
Nak-mal, which is wrong.)

3.3 Performance

The algorithm DS has been implemented in C++ and integrated with iLEAP, a
software supporting Indian language fonts. All the Hindi words in a pocket dictionary [6]
were tested for schwa deletion. The output was checked manually. The results of the
experiments are as follows.

Without Morphological Analysis:
Total number of words tested: 11095
Number of words with wrong schwa deletion results: 431
Thus, correctness of the algorithm: 96.12%

 With a Morphological Analyzer:
 Total number of words tested: 11095

Number of words with wrong schwa deletion results: 12
Thus, correctness of the algorithm: 99.89%

4. Syllable Boundary Marking
 Syllable boundaries in Hindi also depend on the morpheme boundaries. Except
for suffixes starting with a vowel (like Ina in namakIna [xÉ¨ÉEÒxÉ, nəm.kiːn ,salty]),
syllable breaks are always present at the morpheme boundaries. Within the morphemes,
after schwa deletion, the syllable breaks can be determined by using the following rules.
.

1. Mark the consonants and full vowels as F or H as described by the algorithm DS.
2. Introduce syllable breaks between two consecutive Fs unless the second F

corresponds to a full vowel. (E.g. gA-nA 7[MÉÉxÉÉ, song] but ka-lAI [E±ÉÉ<Ç, wrist]).
3. Introduce syllable breaks between H and F unless the H corresponds to the first

consonant of the word or is the beginning of a syllable.(E.g. jan-tA [VÉxÉiÉÉ, public]
but pra-hAr)

4. For conjugate syllable of two or three consonants, break is introduced after the
first consonant. The other one or two consonants form the parts of the next
syllable. However, this rule is not valid if the conjugate syllable is the last in the
word.(E.g. mak-khI [¨ÉCJÉÒ, fly], sam-prati but band).

These rules are sufficient for determining all the syllable boundaries in a word, after its
morphological decomposition is known.

5. Anusvara and Chandra-bindu
 In general, anusvara is pronounced as the nasal sound of the varga (class based
on place of articulation) of the following consonant. Thus, in aMga [+ÆMÉ, part] it is ~N
since M is the followed by g and ~N is the nasal sound of that varga. Similarly, in
aMchala [+ÆSÉ±É, location] it is ~n, in aMDA [+ÆbÉ, egg] it is N and in aMta [+ÆiÉ, end] it is

7 – indicates syllable breaks.

n and in aMbara [+Æ¤É®, sky]it is m. When followed by other consonants (not belonging to
any varga) it is pronounced as .m as in aMsha [+Æ¶É, part]. Since the sound of ~n is
identical to that of n, they can be pronounced using the same phoneme. Whenever
anusvara occurs as the last consonant of the word, it no longer remains a nasal sound;
instead it nasalizes the vowel it follows as in the case of meM [¨Éå, in] and haiM [½é, are].
The word ahaM [+½Æ, ego or self] is an exception to this rule. These two rules have been
captured by a finite state transducer shown in Figure 2.

Figure 2: Finite state transducer for anusvara and chandra-bindu pronunciation rules.
~ represents nasalization of a vowel, C, V represents consonant and vowel. C_k denotes
consonants of k varga which includes k, kh, g,gh, q, K and G. Similarly other symbols

are to be interpreted. # represents the input and .m stands for anusvara that follows
sibilants.

In some contexts, even if anusvara is followed by some consonant, it is not

pronounced as a nasal sound; rather it nasalizes the preceding vowel, like in choMcha
(SÉÉäÆSÉ, cõc beak) or chIMTI. In the current implementation, these are being treated as
exceptions. Chandra-bindu is always used for nasalization of the vowel it follows unless
it is followed by some voiced consonant, in which case it may be pronounced as a nasal
sound also. In Hindi, many a times the same word is written interchangeably using
anusvara and chandra-bindu like aMgura [Ù+ÆMÉÙ®, grape] and a.Ngura [Ù+ÄMÉÙ®]. On the other
hand, the same word may have different pronunciations like sAMjha [ºÉÉÆZÉ, evening] (M
is pronounced both as n or nasalized A). These facts aggravate the problem of correct
pronunciation of anusvara and chandra-bindu. In the current model, the words which do
not conform to the above rules are treated as exceptions. One possible approach is
development of a statistical model for this problem.

6. Conclusion

In this paper, a computational framework for rule based grapheme to phoneme
mapping for Hindi has been described. The system has been implemented in C++.
Initially, the system converts consonants like j~n and vowels like r^i, ai and au to the
proper phonemes. Then anusvara and chandra-bindu are handled using the rules stated in
section 5. The schwa deletion algorithm is applied to the word after that. In the process,

morphological decomposition of the word is also obtained. Finally, the syllable
boundaries are marked using the schwa deletion algorithm. The rules have been
implemented in form of finite state transducers. The system is being used by the
concatenative speech synthesizer developed in Media Lab Asia, IIT Kharagpur.
 The exceptions to the rules can be handled by exhaustive listing, as is done in the
current system. The author is trying to develop a statistical model for covering those
exceptions. Author is currently involved in design of Bengali grapheme to phoneme
converter.

References

[1] Dutoit T., “An Introduction to Text-To-Speech Synthesis”¸ Kluwer Academic

Publishers, 1996.
[2] Allen J., Hunnicut S., Klatt D., “From Text To Speech, The MITTALK System”,

Cambridge University Press, 1987.
[3] Hunnicut S., "Grapheme-to-Phoneme rules: a Review", Speech Transmission

Laboratory, Royal Institute of Technology, Stockholm, Sweden, QPSR 2-3, pp.
38-60.

[4] Belrhari R., Auberge V., Boe L.J., "From lexicon to rules: towards a descriptive
method of French text-to-phonetics transcription", Proc. ICSLP 92, Alberta, pp.
1183-1186.

[5] Kager R., “Optimality Theory”, Cambridge University Press, 1999
[6] “Hindi Bangla English – Tribhasa Abhidhaan”, Sandhya Publication, 1st Edition

March 2001
[7] Kaira S., “Schwa-deletion in Hindi”, Language forum (back volumes), Bhari

publications, Vol. 2, No. 1, April-June 1976
[8] Hooper J., “Constraints on schwa-deletion in American English”, In Recent

Developments in Historical Linguistics, Ed. By J. Fisiak, The Hague: Mouton,
1978 pp. 183-207

[9] Travel, Bernard, “Optional Schwa Deletion: on syllable economy in French”,
Formal Perspectives on Romance Linguistics, Ed. By J. Mark Authier, Barbar S.
Bullock, & Lisa A. Reed., 1999

[10] Narasimhan B., Sproat R., and Kiraz G., "Schwa-deletion in Hindi Text-to-
Speech Synthesis," Workshop on Computational Linguistics in South Asian
Languages, 21st SALA, October 2001, Konstanz

[11] Kaplan R. M., Kay M., “Regular models of phonological rule systems”,
Computational Linguistics, Vol. 20, no. 3, pp. 331-378, Sept. 1994

[12] Mohri M., Sproat R., “An efficient compiler for weighted rewrite rules” in
Proceedings of 34th Mtg of the Association for Computational Linguistics, Santa
Cruz, June 1996, pp. 231-238

