Neural Network based translation and parallel corpus generation

Basis: As of the current scheme in machine translation, Statistical Machine Translation (SMT) is preferred to Neural Network based systems. Also, making a system that learns translation requires the availability of a one to one correspondence between the sources and target sentences, i.e., having parallel corpora at one’s disposal is crucial. However, commonly available parallel corpora contain hardly more than a 100,000 words. Therefore, the translators trained using them are naturally weak.

Project schema: We propose to train a system that learns translation as well as generates parallel corpus using comparable corpus (which is readily available) for any 2 languages. We achieve this by:

1. Training a weak translator using the limited parallel corpus available.
2. Assuming we have a corpus X and its comparable counterpart Y, we use this weak translator to translate X into Y’s language yielding a corpus Z.
3. An aligner like Hunalign or LF Aligner (again based on hunalign) is used to match the concepts within sentences in Z to the concepts within sentences in Y.
4. The above step outputs matching pairs of sentences in Y and Z (both in the same language, of course). For instance, if Y had sentences from Y_1, Y_2, . . . , Y_N while Z had sentences from Z_1, Z_2, . . . , Z_M, the aligner produces sentence pairs:

 \{Y_1, Z_1\}, \{Y_2, Z_2\}, . . . , \{Y_K, Z_K\}.

 Note that the output numbering may not be the same as input numbering of sentences.
5. The Z sentences in the pair are mapped back to their counterparts in X and we get pairs \{Y_1, X_1\}, \{Y_2, X_2\}, . . . , \{Y_K, X_K\}.
6. Note that the above generated parallel corpus is free of any noise associated with translation.
7. The weak translator is retrained on the generated parallel corpus in a similar way.

Preferred languages are English and Hindi.

Papers referenced

1. Kalchbrenner and Blunsom, Recurrent Continuous Translation Models, 2013
2. Sutskever et al, Sequence to Sequence Learning with Neural Networks, 2014
4. Hermann and Blunsom, Multilingual Distributed Representations without Word Alignment, 2014
5. Cho et al, Neural Machine Translation by jointly learning to align and translate, ICLR 2015
6. Wolk and Marasek, Building subject-aligned comparable corpora and mining it for truly parallel sentence pairs, 2014