MEANING REPRESENTATION
PARSING
Avikalp Kumar Gupta & Anshul Goyal

SemEval 2016: Task 8 (http://alt.qcri.org/semeval2016/task8/)
AMR (Abstract Meaning Representation)

- Who is doing what to whom in a sentence
- Semantic parsing is necessary for AMR
- Different from a parse tree, it is abstract
AMR (Abstract Meaning Representation)

eg: “The London emergency services said that altogether 11 people had been sent to hospital for treatment due to minor wounds.”

AMR:

```
(s / say-01
 :ARG0 (s2 / service
 :mod (e / emergency)
 :location (c / city :wiki "London"
 :name (n / name :op1 "London")))
 :ARG1 (s3 / send-01
 :ARG1 (p / person :quant 11)
 :ARG2 (h / hospital)
 :mod (a / altogether)
 :purpose (t / treat-03
 :ARG1 p
 :ARG2 (w / wound-01
 :ARG1 p
 :mod (m / minor))))
```
AMR (Abstract Meaning Representation)

A single AMR can be expressed in various ways in English:

eg.

```
(w / want-01
  :ARG0 (b / boy)
  :ARG1 (b2 / believe-01
    :ARG0 (g / girl)
    :ARG1 b))
```

Can be expressed in the following ways:

- The boy wants the girls to believe him
- The boy desires the girl to believe him.
- The boy desires to be believed by the girl.
- The boy has a desire to be believed by the girl.
- The boy’s desire is for the girl to believe him.
- The boy is desirous of the girl believing him.

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
AMR

- AMR is represented using a rooted, directed acyclic graph with labels on edges (relations) and leaves (concepts)

- Hence:
 1. Task1: Find concepts
 2. Task2: Find relations
EARLIER WORK (JAMR)

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A Smith. A discriminative graph-based parser for the abstract meaning representation. 2014.
Concept Identification

- A sequence of words is fed into a tool called clex, which on the basis of some rules, returns a concept fragment from the training data.
Relation Identification

- We build a connected graph using the concepts as nodes.
- The following constraints are applied on the graph:
 1. Preserving (concept)
 2. Simple
 3. Connected
 4. Deterministic
- Given constraints, we seek the maximum scoring subgraph based on the feature set in appendix 1.
Results

<table>
<thead>
<tr>
<th>concepts</th>
<th>Train</th>
<th></th>
<th>Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F_1</td>
<td>P</td>
</tr>
<tr>
<td>gold</td>
<td>.85</td>
<td>.95</td>
<td>.90</td>
<td>.76</td>
</tr>
<tr>
<td>automatic</td>
<td>.69</td>
<td>.78</td>
<td>.73</td>
<td>.52</td>
</tr>
</tbody>
</table>

Table 5: Parser performance.
Implementation of JAMR parser

The London emergency services said that altogether 11 people had been sent to hospital for treatment due to minor wounds.”
Challenges

- Capturing the semantics of the sentence
- Making the algorithm compatible all languages (since the baseline used a lot of English-specific rules)
Approach

- We are using Deep Bidirectional LSTM for semantic role labeling as proposed by Wei Xu and Jie Zhou in the below sited paper.
- Using this we get a semantically parsed graph, but with unlabelled edges.

Approach

- Now to label these edges, initially, we plan to
 - use the *clex* tool over each entity to recognize the concept it belongs to
 - and then use the relation identification function over these concepts, giving excessive weights to the edges found in the semantic parsed graph

QUESTIONS?
Appendix I

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>For each $\ell \in L_E$, 1 if the edge has that label</td>
</tr>
<tr>
<td>Self edge</td>
<td>1 if the edge is between two nodes in the same fragment</td>
</tr>
<tr>
<td>Tail fragment root</td>
<td>1 if the edge’s tail is the root of its graph fragment</td>
</tr>
<tr>
<td>Head fragment root</td>
<td>1 if the edge’s head is the root of its graph fragment</td>
</tr>
<tr>
<td>Path</td>
<td>Dependency edge labels and parts of speech on the shortest syntactic path between any two words in the two spans</td>
</tr>
<tr>
<td>Distance</td>
<td>Number of tokens (plus one) between the two concepts’ spans (zero if the same)</td>
</tr>
<tr>
<td>Distance indicators</td>
<td>A feature for each distance value, that is 1 if the spans are of that distance</td>
</tr>
<tr>
<td>Log distance</td>
<td>Logarithm of the distance feature plus one.</td>
</tr>
<tr>
<td>Bias</td>
<td>1 for any edge.</td>
</tr>
</tbody>
</table>

Table 1: Features used in relation identification. In addition to the features above, the following conjunctions are used (Tail and Head concepts are elements of L_V): Tail concept \land Label, Head concept \land Label, Path \land Label, Path \land Head concept, Path \land Tail concept, Path \land Head concept \land Label, Path \land Tail concept \land Label, Path \land Head word, Path \land Tail word, Path \land Head word \land Label, Path \land Tail word \land Label, Distance \land Label, Distance \land Path, and Distance \land Path \land Label. To conjoin the distance feature with anything else, we multiply by the distance.