
Overfitting and 
Regurlarization in 
Machine Learning

Based on [Bishop, PRML 05 ] Ch.1 



Feedback in Learning 

• Type of feedback:
– Supervised learning: correct answers for each 

example
• Discrete (categories) : classification
• Continuous : regression

– Unsupervised learning: correct answers not given
– Reinforcement learning: occasional rewards



Inductive learning
• Simplest form: learn a function from examples

An example is a pair (x, y) : x = data, y = outcome
   assume: y drawn from function f(x) :  y = f(x) + noise

f  = target function

Problem: find a hypothesis h
such that h ≈ f
given a training set of examples

Note: highly simplified model :
– Ignores prior knowledge : some h may be more likely
– Assumes lots of examples are available
– Objective: maximize prediction for unseen data – Q. How? 



Inductive learning method
• Construct/adjust h to agree with f on training set
• (h is consistent if it agrees with f on all examples)
• E.g., curve fitting:



y = f(x)

Regression:  
y is continuous 

Classification: 
y : set of discrete values 

  e.g. classes C1, C2, C3...
 y ∈ {1,2,3...}

Regression vs Classification



Precision:  
A / Retrieved 

 Positives

Recall:
   A / Actual

    Positives

Precision vs Recall



Regression



Polynomial Curve Fitting



Linear Regression

y = f(x) = Σi wi . φi(x)

φi(x)  :  basis function

 wi      : weights

Linear : function is linear in the weights
Quadratic error function --> derivative is linear in w



Sum-of-Squares Error Function



0th Order Polynomial



1st Order Polynomial



3rd Order Polynomial



9th Order Polynomial



Over-fitting

Root-Mean-Square (RMS) Error:



Polynomial Coefficients   



9th Order Polynomial



Data Set Size: 
9th Order Polynomial



Data Set Size: 
9th Order Polynomial



Regularization

Penalize large coefficient values



Regularization: 



Regularization: 



Regularization:          vs. 



Polynomial Coefficients   



Information Theory



Twenty Questions

Knower: thinks of object (point in a probability space)
Guesser: asks knower to evaluate random variables

Stupid approach:

    Guesser: Is it my left big toe?
    Knower: No.

    Guesser: Is it Valmiki? 
    Knower: No.

    Guesser: Is it Aunt Lakshmi?
    ...



Expectations & Surprisal

Turn the key:  expectation:  lock will open

Exam paper showing:  could be 100, could be zero.  
 random variable: function from set of marks 

to real interval [0,1]

Interestingness  ∝  unpredictability

surprisal (r.v. = x) = - log2 p(x)

= 0 when p(x) = 1
= 1 when p(x) = ½ 
= ∞ when p(x) = 0



A: 00010001000100010001. . . 0001000100010001000100010001

B: 01110100110100100110. . . 1010111010111011000101100010

C: 00011000001010100000. . . 0010001000010000001000110000

Expectations in data

Structure in data    easy to remember



Entropy

Used in
• coding theory
• statistical physics
• machine learning



Entropy



Entropy

In how many ways can N identical objects be allocated M 
bins?

Entropy maximized when



Entropy in Coding theory

x discrete with 8 possible states; how many bits to 
transmit the state of x?

All states equally likely



Coding theory



Entropy in Twenty Questions

Intuitively : try to ask q whose answer is 50-50

Is the first letter between A and M? 

question entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable: 
entropy = - ½ * log2(½) - ½ * log2(½)  = 1.0

For P(Y)=1/1028
entropy = - 1/1028 * -10 - eps =  0.01



Change of variable x=g(y)
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