Overfitting and Regurlarization in Machine Learning

Based on [Bishop, PRML 05] Ch.1

Feedback in Learning

- Type of feedback:
 - Supervised learning: correct answers for each example
 - Discrete (categories) : classification
 - Continuous : regression
 - Unsupervised learning: correct answers not given
 - Reinforcement learning: occasional rewards

Inductive learning

• Simplest form: learn a function from examples

An example is a pair (x, y) : x = data, y = outcomeassume: y drawn from function f(x) : y = f(x) + noise

f = target function

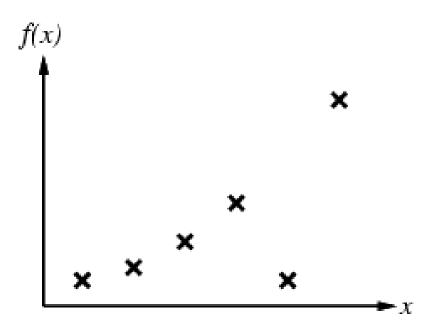
Problem: find a hypothesis hsuch that $h \approx f$ given a training set of examples

Note: highly simplified model :

- Ignores prior knowledge : some h may be more likely
- Assumes lots of examples are available
- Objective: maximize prediction for unseen data Q. How?

Inductive learning method

- Construct/adjust h to agree with f on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:



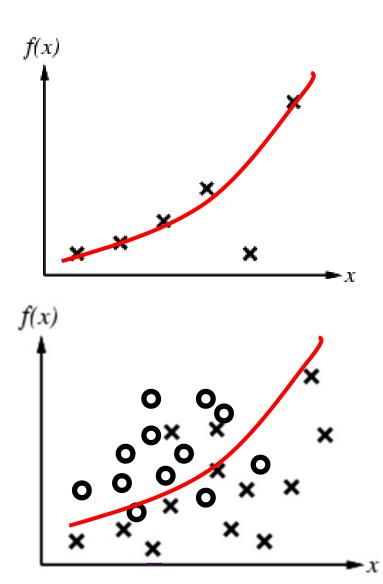
Regression vs Classification

y = f(x)

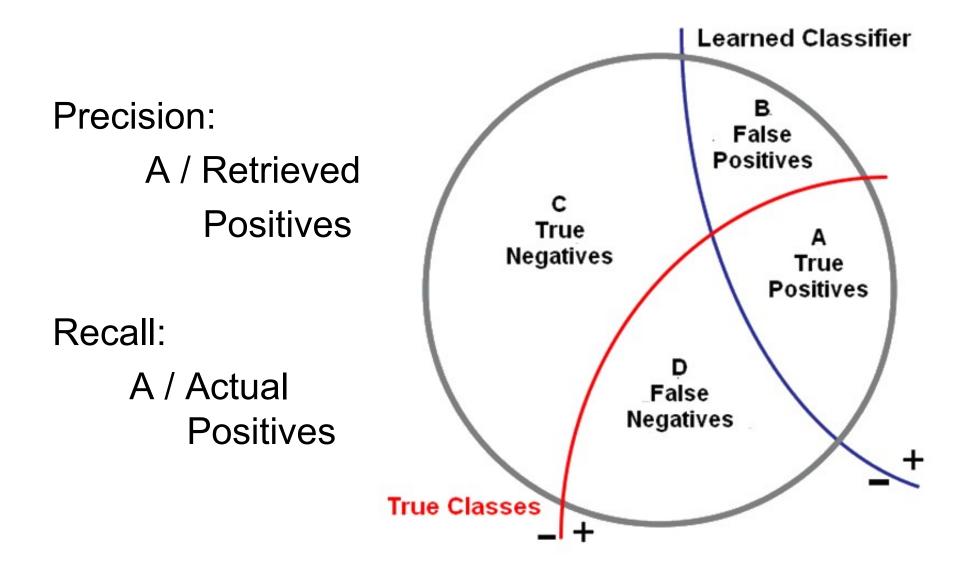
Regression: y is continuous

Classification:

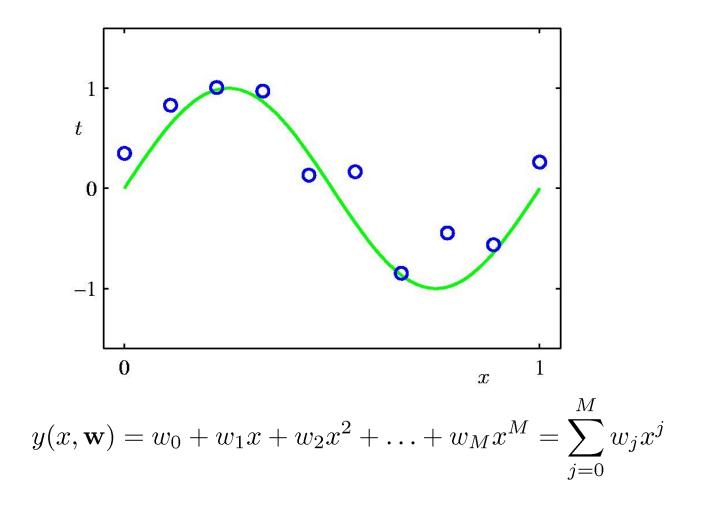
y : set of discrete values e.g. classes C_1 , C_2 , C_3 ... y $\in \{1,2,3...\}$



Precision vs Recall



Polynomial Curve Fitting



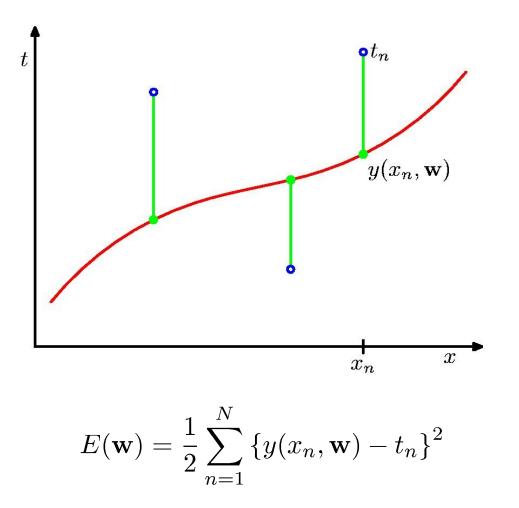
Linear Regression

$$y = f(x) = \Sigma_i W_i \cdot \varphi_i(x)$$

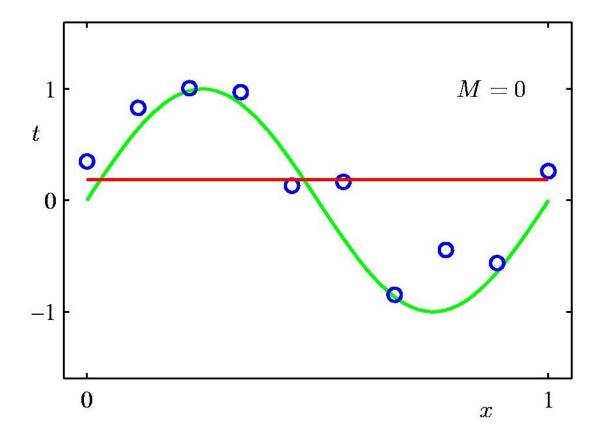
- $\boldsymbol{\phi}_{i}(\mathbf{x})$: basis function
 - W_i : weights

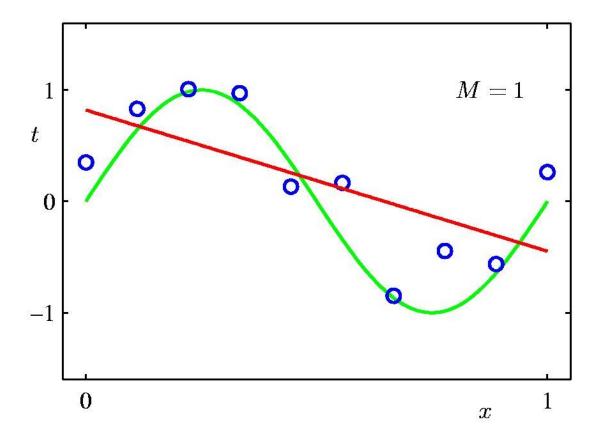
Linear : function is linear in the weights Quadratic error function --> derivative is linear in **w**

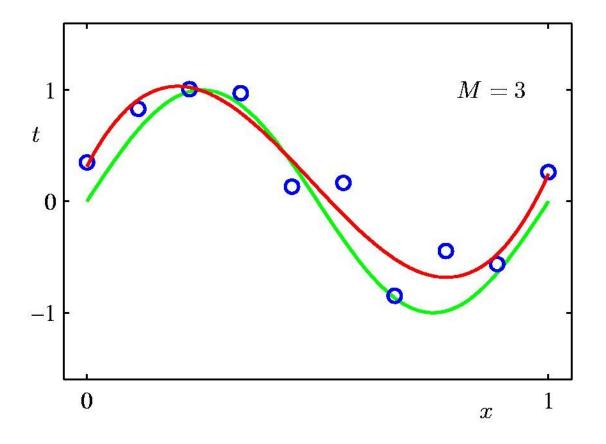
Sum-of-Squares Error Function

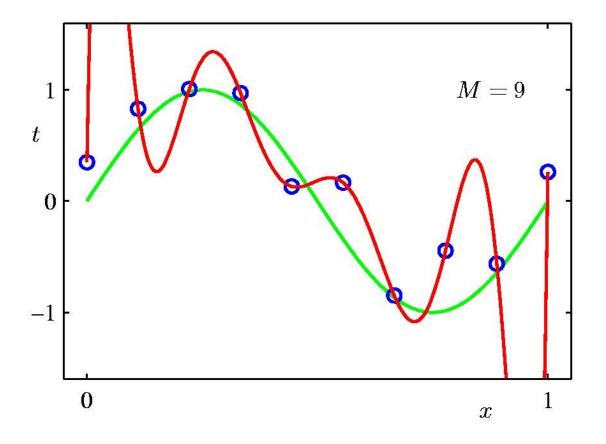


Oth Order Polynomial

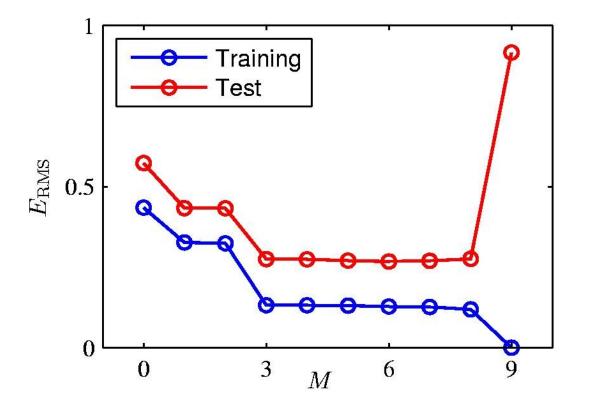








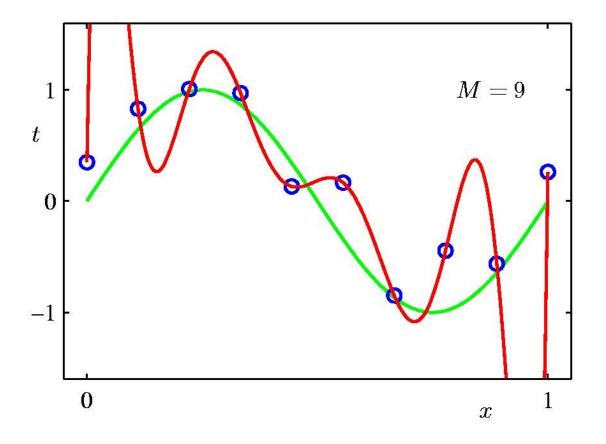
Over-fitting



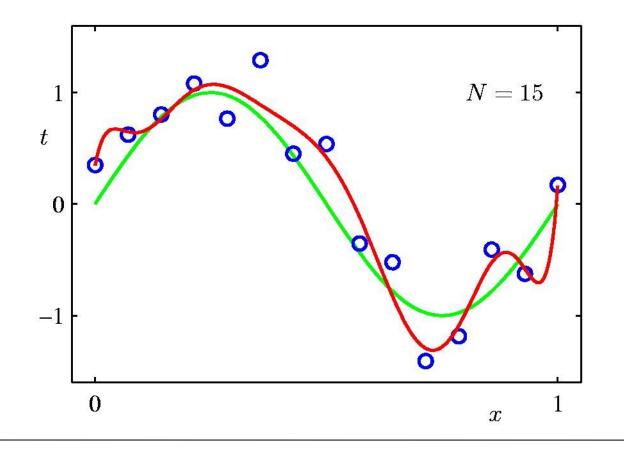
Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Polynomial Coefficients

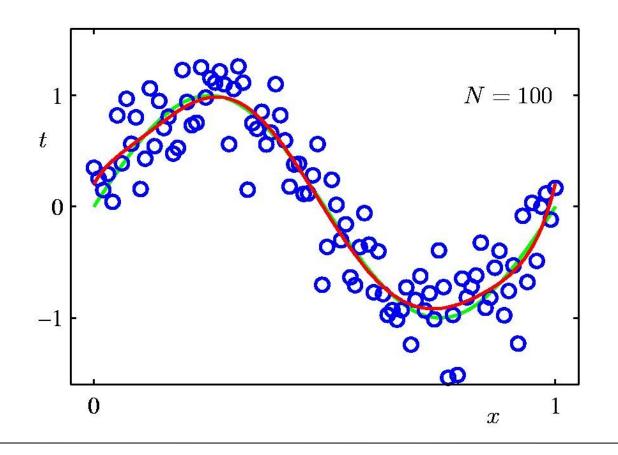
	M = 0	M = 1	M = 3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43



Data Set Size: N = 15



Data Set Size: N = 100

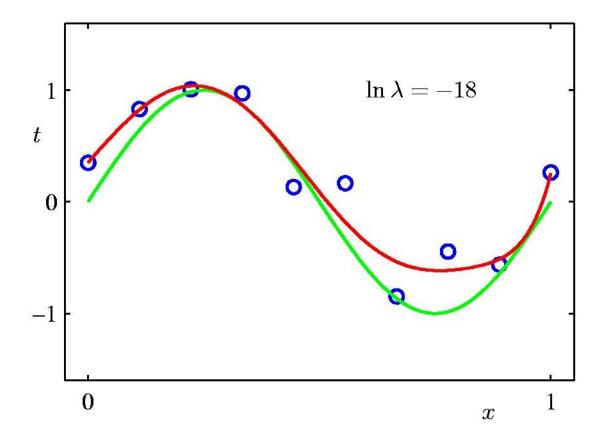


Regularization

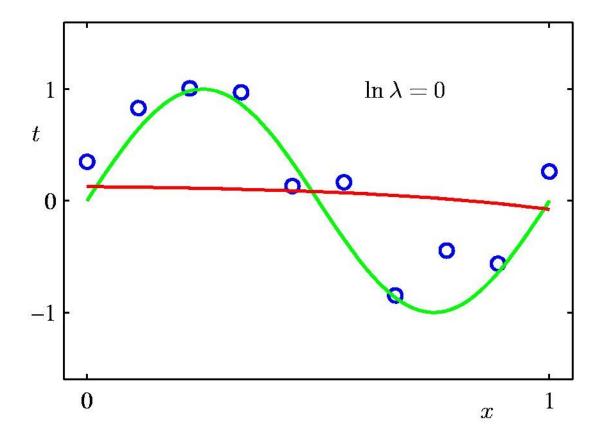
Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

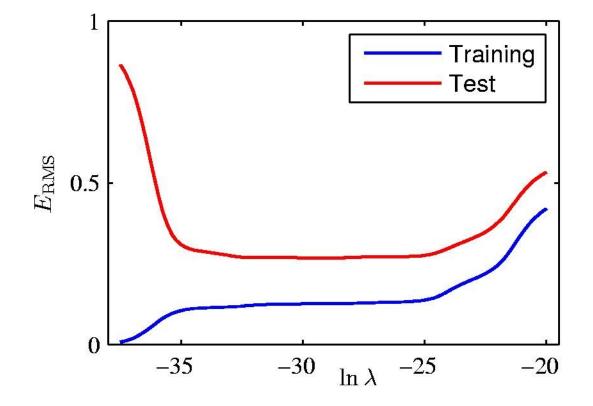
Regularization: $\ln \lambda = -18$



Regularization: $\ln \lambda = 0$



Regularization: $E_{\rm RMS}$ **vs.** $\ln \lambda$



Polynomial Coefficients

	$\ln\lambda=-\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^\star	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Information Theory

Knower: thinks of object (point in a probability space) Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe? Knower: No.

Guesser: Is it Valmiki? Knower: No.

Guesser: Is it Aunt Lakshmi?

. . .

Expectations & Surprisal

Turn the key: expectation: lock will open

Exam paper showing: could be 100, could be zero. *random variable*: function from set of marks to real interval [0,1]

Interestingness \propto unpredictability

surprisal (r.v. = x) =
$$-\log_2 p(x)$$

= 0 when p(x) = 1
= 1 when p(x) = $\frac{1}{2}$
= ∞ when p(x) = 0

Structure in data \rightarrow easy to remember

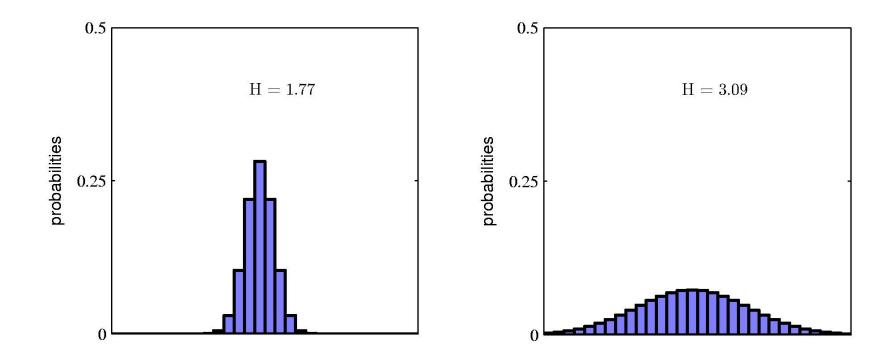
Entropy

$$\mathbf{H}[x] = -\sum_{x} p(x) \log_2 p(x)$$

Used in

- coding theory
- statistical physics
- machine learning

Entropy



Entropy

In how many ways can N identical objects be allocated M bins?

$$W = \frac{N!}{\prod_i n_i!}$$

$$H = \frac{1}{N} \ln W \simeq -\lim_{N \to \infty} \sum_{i} \left(\frac{n_i}{N}\right) \ln \left(\frac{n_i}{N}\right) = -\sum_{i} p_i \ln p_i$$

Entropy maximized when $\forall i : p_i = \frac{1}{M}$

Entropy in Coding theory

x discrete with 8 possible states; how many bits to transmit the state of x?

All states equally likely

$$H[x] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3$$
 bits.

Coding theory

_	$x \mid$	a	b	С	d	е	f	g	h
_	p(x)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{64}$	$\frac{1}{64}$	$\frac{1}{64}$
	code	0	10	110	1110	111100	111101	111110	111111

$$\begin{aligned} \mathbf{H}[x] &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64} \\ &= 2 \text{ bits} \end{aligned}$$

average code length = $\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + 4 \times \frac{1}{64} \times 6$ = 2 bits

Entropy in Twenty Questions

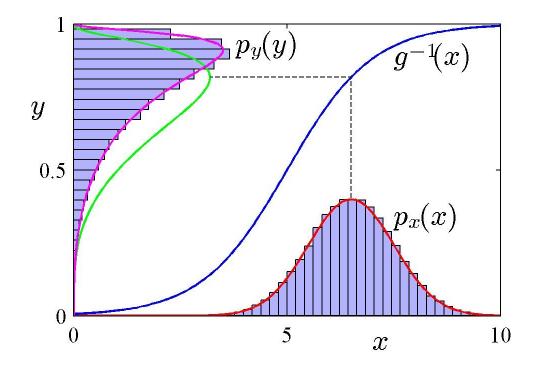
Intuitively : try to ask q whose answer is 50-50

Is the first letter between A and M?

question entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable: entropy = $-\frac{1}{2} * \log_2(\frac{1}{2}) - \frac{1}{2} * \log_2(\frac{1}{2}) = 1.0$ For P(Y)=1/1028 entropy = $-\frac{1}{1028} * -10 - eps = 0.01$

Change of variable x=g(y)



$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) |g'(y)|$$