Semantic Compositionality through Recursive Matrix-Vector Spaces

COURSE PROJECT OF CS365A SONU AGARWAL VIVEKA KULHARIA

Goal

•Classifying semantic relationships such as "cause-effect" or "componentwhole" between nouns

• Examples:

"The introduction in the book is a summary of what is in the text."

Component-Whole

>"The radiation from the atomic bomb explosion is a typical acute radiation."

Cause-Effect

Parse Tree

Image created using www.draw.io

Binary Parse Tree

Image created using www.draw.io

What's Novel ?

•We introduce a recursive neural network model (RNN) that learns compositional vector representations of vectors or sentences of arbitrary length or syntactic type

•We assign a vector and a matrix to every node in the parse tree

- Vector captures the inherent meaning of the word
- Matrix captures how the word modifies the neighboring words

•A representation for a longer phrase is computed in a bottom-up manner by recursively combining children words according to the syntactic structure in the parse tree

Recursive Matrix-Vector Model

Image Source: http://www.socher.org/index.php/Main/SemanticCompositionalityThroughRecursiveMatrix-VectorSpaces

Training

•Initialize all the word vectors with pre-trained n-dimensional word-vectors

•Initialize matrices as $X = I + \varepsilon$, where I is the identity matrix and ε is Gaussian noise

•Combining two words:

$$p = f_{A,B}(a,b) = f(Ba,Ab) = g\left(W\begin{bmatrix}Ba\\Ab\end{bmatrix}\right)$$

$$P = f_M(A, B) = W_M\begin{bmatrix}A\\B\end{bmatrix}$$

Training

•We train vector representations by adding on top of each parent node a softmax classifier to predict a class distribution over sentiment or relationship classes

$$d(p) = soft \max\left(W^{label} p\right)$$

•Error function: $E(s,t;\theta) = \text{sum of cross-entropy errors at all node, where s is the sentence and t is its tree.}$

Learning

•Model parameters:

$$\theta = (W, W_M, W^{label}, L, L_M)$$

where L and L_M are the set of word vectors and word matrices.

•Objective Function:

$$\frac{\partial J}{\partial \theta} = \frac{1}{N} \sum_{(x,t)} \frac{E(x,t;\theta)}{\partial \theta} + \lambda \theta$$

where E is the cross entropy error and λ is the regularization parameter.

Classification of Semantic Relationship

Results

Dataset: SemEval 2010 Task 8

	C-E	C-W	C-C	E-D	E-O	I-A	M-C	M-T	P-P	0	< cl	assified	d as
											SUM	xDIRx	ACTUAL
C-E	295	2	0	0	4	0	0	3	4	16	324	4	328
C-W	0	238	5	1	2	9	12	7	3	29	306	6	312
C-C	0	4	161	12	1	0	0	2	0	12	192	0	192
E-D	0	2	9	265	0	2	0	0	0	14	292	0	292
E-O	6	1	2	4	215	3	0	2	3	22	258	0	258
I-A	1	3	0	2	0	116	0	3	9	20	154	2	156
M-C	0	2	0	0	1	0	209	3	2	15	232	1	233
M-T	0	1	0	4	1	0	1	227	2	23	259	2	261
P-P	4	4	0	2	5	10	2	3	180	21	231	0	231
0	16	41	18	31	26	30	38	42	24	188	454	0	454
SUM	322	298	195	321	255	170	262	292	227	360	2702	15	2717

Accuracy (calculated for the above confusion matrix) = 2094/2717 = 77.07% F1 Score = 82.51%

Code Source: http://www.socher.org/index.php/Main/SemanticCompositionalityThroughRecursiveMatrix-VectorSpaces

Reference

- <u>Semantic Compositionality through Recursive Matrix-Vector Spaces</u>, Richard Socher, Brody Huval, Christopher D. Manning and Andrew Y. Ng. Conference on Empirical Methods in Natural Language Processing (EMNLP 2012, Oral)
- 2. <u>Composition in distributional models of semantics</u>, J. Mitchell and M. Lapata Cognitive Science, 34(2010):1388–1429
- 3. <u>Simple customization of recursive neural networks for semantic relation classification</u>, Kazuma Hashimoto, Makoto Miwa, Yoshimasa Tsuruoka, and Takashi Chikayama 2013 In EMNLP.