Sentiment Analysis Using Semi-Supervised Recursive Autoencoder Vinay Kumar(12806) CSE, IIT Kanpur

INTRODUCTION

Sentiment analysis is a growing field targeting to extract insights or subjective conclusions from the sources like text or large amount of data.

Applications: Getting significant attention from both business and research communities, sentiment analysis has many potential applications like summarizing user-reviews, brand-management and public relations management of business organizations and governments.

Past work: Most of the past work has been focused on classifying the data in two classes: positive and negative. In my project, I have classified the data in five classes: very positive, positive, neutral, negative and very negative.

DATASET

I am using the sentiment analysis dataset from Kaggle [3], which contains phrases and sentences from Rotten Tomatoes movie reviews. This dataset [3] consists of 8544 sentences which is converted to 156060 English phrases from movie reviews.

Kaggle. 2014. Sentiment Analysis on Movie Reviews. https://www.kaggle.com/c/sentimentanalys is-on-movie-reviews

www.PosterPresentations.com

METHODS

I am using the Semi-Supervised Recursive Autoencoders algorithm from Richard Socher. The algorithm consists of an unsupervised part and a supervised part.

Recursive Autoencoder(RAE): The unsupervised part is a recursive auto-encoder that creates an N-dimensional vector that represents the phrase or simply called as the 'code'.

Supervised Learning Classifier(Multinomial Logistic Regression): In the second part after obtaining an N-dimensional vector or 'code' for each phrase from the unsupervised recursive auto-encoder, supervised learning is to be used to classify this vector into a particular class.

Google Word2Vec: Instead of using the randomly initialized N-dimensional vectors, I will use google word2vec tool [4] which maps words with similar meaning to similar positions in the N-dimensional vector space.

MULTINOMIAL LOGISTIC REGRESSION

Softmax Regression: This model generalizes logistic regression to classification problems where the class label y can take on more than two possible values.

MINFUNC

I used *minFunc* which is a Matlab function for unconstrained optimization of differentiable real-valued multivariate functions using line-search methods.

COST FUNCTION

$$p(y^{(i)} = j | x^{(i)}; \theta) = \frac{e^{(\theta_j - \psi)^T x^{(i)}}}{\sum_{l=1}^k e^{(\theta_l - \psi)^T x^{(i)}}}$$
$$= \frac{e^{\theta_j^T x^{(i)}} e^{-\psi^T x^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}} e^{-\psi^T x^{(i)}}}$$
$$= \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}}}.$$

CLASS PROBABILITIES

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} 1\left\{ y^{(i)} = j \right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_l^T x^{(i)}}} \right]$$

Notice that this generalizes the logistic regression cost function, which could also have been written:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) + y^{(i)} \log h_{\theta}(x^{(i)}) \right]$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{j=0}^{1} 1\left\{ y^{(i)} = j \right\} \log p(y^{(i)} = j | x^{(i)}; \theta) \right]$$

RESULTS

I have the following results for Using Recursive Auto-Encoder with Multinomial Logistic Regression. **My Overall Accuracy: 85.8%** PAST WORK: One-vs-all LR (RAE): 85.3% SVM: 85.6% Stanford Model(Socher): 86.4%

CLASSWISE-ACCURACY

Class	Accuracy
V.Negativ	95.10%
Negative	83.40%
Neutral	73.10%
Positive	80.60%
V. Positive	94.60%

α	•
W	
U	
N	1
re	
m	
0]	ľ
[1]]
[1]	
and	
Rec	
Dist	
ang	/
Rec	
[2]	
Sen	1
Aut	(
Star	
[3]	(
http	
IIII	1

vs a Usin initi of th rand accu We Bec algo reac prob train netv

ISSUES & RESOLUTIONS

Randomized N-dimensional vector : Using word2vec to map similar words nearby to exploit the similarity of meaning/context

Belong to more than one class -> Unnecessary errors : Using Softmax regression instead of logistic regression

Altering the values of random parameter, α, the parameter that controls the relative weighting between **the reconstruction error**.

sing MinFunc: When using Iatlab's mnrfit to train a multinomial logistic gression classifier recently, I found it rather emory-consuming. I used *minFunc* for otimization of multivariate functions.

REFERENCES

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, C. D. Manning. 2011b. SemiSupervised cursive Autoencoders for Predicting Sentiment tributions. In EMNLP Url: http://ai.stanford.edu/ /papers/emnlp11-

cursiveAutoencodersSentimentDistributions.pdf

Bahareh Ghiyasian and Yun Fei Guo. 2014. timent Analysis Using SemiSupervised Recursive coencoders and Support Vector Machines. nford.edu

Google. 2014. word2vec.

https://code.google.com/p/word2vec/

[4] PENG QI http://qipeng.me/software/mnlr.html

CONCLUSION

Softmax regression gave a slight improvent over onevs all regression.

Using pre-trained word vectors instead of randomly initialized vector gave a better mapping to the model of the semantic order of words. Changing the values of random parameters like α , can also improve the accuracy slightly.

We could try increasing the training dataset size. Because recursive neural network is a more complex algorithm (non-linear), it needs more training data to reach a certain upper bound on the error with high probability. Therefore, if we increase the size of the training data, the marginal improvement of neural network would be more.