
Create an agent that can learn to play Atari 2600 games using Reinforcement Learning. 

The Problem

Various previous methods to learn controlling agents have utilized a range of neural 

network architectures and have exploited both supervised and unsupervised learning. 

But using reinforcement learning for learning to control agents directly from high-

dimensional sensory inputs like vision and speech wasn’t much successful till 1995 

when TD-gammon, a backgammon playing program which learnt entirely by 

reinforcement learning and self-play, achieved a superhuman level of play[1]. The first 

deep learning model to successfully learn control policies directly from high-

dimensional sensory input using reinforcement learning was presented by Mnih et. al. 

Motivation

Reinforcement learning: In a reinforcement learning model, an agent takes actions in an 

environment with the goal of maximising a cumulative reward. The basic reinforcement 

learning model consists of: a set of environment states S; a set of actions A; rules of 

transitioning between states; rules that determine the scalar immediate reward of a transition; 

and rules that describe what the agent observes.

Q-learning is a model-free form of RL algorithm:

Q-Learning

Suited for extracting features from images

We take 4 images at a time

Images taken as 2D matrices

2D matrices convolved with linear filters

Weight matrices for multiple image

The CNN shown in the figure treats each image as a 2D object and convolved them with linear 

filters to get the state of the game. It also assigns the expected reward value to each possible 

action.

Convulational Neural Networks Arcade Learning Environment

It is built on top of Stella, open-source Atari 2600 emulator 

Built in C++, Support for over 50 games

Can programmatically input player commands

Outputs Image of the game screen, score and the state of the 

game

Implimentation

[1] Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):58–
68, 1995. 

[2] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint 
arXiv:1312.5602 (2013)

Refrences

Algorithm

• We have implemented the algorithm for Q-Learning

• We tried implementing CNNs on CPU and a Low End GPU and couldn’t get satisfactory 

result.

• Now we will try to implement it on a better GPU.

Varsha Lalwani (11787) Masare Akshay Sunil (12403)

Prof. Amitabha Mukherjee

Playing Atari Games With Reinforcement Deep Learning

For many years, it has been possible for a computer to play a single game by using 

some specially designed algorithm for that particular game. But these algorithms were 

useless outside their context. In this project we are trying to implement a deep 

reinforced learning based agent to play multiple video games. Also, if a General Game 

Playing system is well designed, it can be used in other areas as well, like search and 

rescue.

Past Work

Our Approach

We are using the reinforcement learning approach as it has been shown to yield better 

result than the supervised or unsupervised learning approach. In this approach can be 

divided into three major parts:

1. Convulational Neural Networks

2. Q-Learning

3. Emulation Interface

Our Algorithm

As, our approach in this project is quite similar to that of Mnih et. al. where we are 

using a convolutional neural network, trained with a variant of Q-learning, whose 

input is raw pixels and whose output is a value function estimating future rewards

We can broadly describe our working algorithm as follows:

• Initialize the game Emulation Environment Interface

• Take the screenshots of the game

• Pre-process the screenshots

• Use CNNs to extract the features from the screenshots

• Choose any action from the list of possible actions according to 

current state

• Observe reward and save it to memory

• Repeat and Train

The basic model for reinforcement learning[1]

controller Q-learning (S,A,γ,α) 
Inputs:

S is a set of states 
A is a set of actions 
γ the discount 
α is the step size 

Local:
real array Q[S,A] 
previous state s 
previous action a 

initialize Q[S,A] arbitrarily
observe current state s

Repeat
select and carry out an action a
observe reward r and state s' 
Q[s,a] ← (1-α) Q[s,a] + α(r+ γmaxa' Q[s',a'])
s ←s' 

until termination 

The agent maintains a table Q[S,A], where
S is the set of states and A is the set of 

actions. 
At a given time, Q[s,a] is the current estimate of 
Q*[s,a]. 
Q*[s,a] is the expected value (cumlative
discounted reward) of doing a in state s and then 
following the optimal policy. 
Update: Q[s,a] ← (1-α) Q[s,a] + α(r+ γ maxa' 
Q[s',a']) 
It is an off-policy method i.e. learns the optimal 
policy no matter which policy it is carrying out.

Why Breakout?

• Has only 2 states – dead or alive

• Has only 2 actions – left or right

• Need to reward only for alive states and very large 

negative reward for dead state.

• And it’s FUN!! 

Platform

• We are using Python implementation of ALE

• To use GPU for CNNs, Theano library of Python is used

• GPU available is Nvidia GTX 760

• Special Thanks to Prof. Vinay Namboodiri for making the GPU available


