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Motivation

Critically important to our ecosystem
- Represent the bottom few levels of food chain
- Play an important role in ocean’s carbon cycle

Population levels are an ideal measure of the health of
world’s oceans and ecosystems



Traditional methods are

- Time consuming
- Cannot scale for large-scale studies

Could take a year or more to manually analyze the imagery
volume captured in a single day

A better approach :

- Use underwater imagery sensors for capturing images
- Automated image classification using machine learning



Objective

To create an algorithm that given an image, assigns class
probabilities for various plankton classes.



Dataset

Provided for Data Science Bowl competition
Contains 121 Classes

Consists of :

- 30,000 labeled images
- 130,000 test images



Challenges

- Many different species with varying size

- Image can have any orientation within 3-D space

- Ocean replete with detritus that have no taxonomic
identification

- Sometimes difficult for even experts because of noise

- Presence of "unknown" classes



Methodology



Computer Vision

What we see
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What the computer sees




Feature Learning
Representation Algorithm

How to determine features given the image”?



Features for vision
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Domain specific hand engineered features like
- Ratio of glob's width and height
- Shape/Size



Learning the features!

Using Neural Networks (Inspired by nature)
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Somatosensory cortex learns to see

One Learning Algorithm Hypothesis Neural Networks



Convolutional Neural Networks

Neural Networks with :

Local Connectivity Same weight for neurons in a depth slice

/ . /
a hidden neuron in
next layer
@>@ @§

——

< VL




Layers used to build CNN



Convolutional Layer
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Polling Layer
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RELU Layer

Apply elementwise activation function such as max(0,x)

FC (i.e. Fully Connected) Layer

As with ordinary Neural Networks and as the name implies,
each neuron in this layer will be connected to all the
numbers in the previous volume.



CNN Example

C3: 1. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

|
| Ful cmAection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeNet-5, LeCun 1980]

Typical CNNs for vision look like
- [CONV-RELU-POOL]xN,[FC-RELU]xM, SOFTMAX
- [CONV-RELU-CONV-RELU-POOL]xN,[FC-RELU]xM,SOFTMAX



Work already done

Explored the dataset

Learnt to use AWS and used it to train a CNN
Read some theory

Tried Random Forest with hard coded features*®

* Used the getting started code available online



Future Work

- Designing the Network
- Preventing Overfitting
- Data Augmentation
- Dropouts
- Benchmarking against SIFT



Why data augmentation?
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Questions?



