Predicting ocean health One plankton
at a time

Abhilash Kumar (12014)
Peeyush Agarwal (12475)

April 18, 2015

Indian Institute of Technology, Kanpur
Kanpur 208016

Contents

1 Introduction

2 Motivation

3 Dataset

4 Challenges

5 Previous Work and Approaches

6 Methodology
6.1 Data Preprocessing oL
6.2 Random Forest
6.3 Convolutional Neural Network
6.3.1 Network Description
6.3.2 Training L oo
6.4 Maxout Network L.
6.4.1 Network Description
6.4.2 Trainingo

7 Results

References

w

© 0000 OO U R W

©

-
en]

Abstract

This project is an attempt to apply state of the art machine learning
algorithms in computer vision on the plankton dataset. More specifically,
we have used convolutional neural networks for image classification as they
have shown excellent performance on some of the most difficult computer
vision tasks. We experimented with two different convnet architectures.
The first one is inspired by Hinton’s work and the second one is inspired
by Bengio’s work. The winning team in Data Science Bowl Competi-
tion, which required participants to work on the same dataset, also used
convnets to achieve the best classification results.

1 Introduction

The objective of the project was build an algorithm to automate the plankton
image identification process. So, given an image, we had to classify it into one
of the 121 plankton classes.

2 Motivation

Plankton are vitally important to our ecosystem. They represent the bottom
few levels of a food chain. They play an important role in the bio geochemical
cycles of many important chemical elements, including the ocean’s carbon cy-
cle. Loss of plankton populations could result in ecological upheaval as well as
negative societal impacts, particularly in indigenous cultures and the develop-
ing world. Plankton’s global significance makes their population levels an ideal
measure of the health of the world’s oceans and ecosystems [1].

Traditional methods for measuring and monitoring plankton populations
are time consuming and cannot scale to the granularity or scope necessary for
large-scale studies. A better approach is to use underwater imagery sensors
for capturing microscopic, high-resolution images over large study areas. These
images can then be analyzed to assess species populations and distributions.

Manual analysis of the imagery is infeasible as it could take a year or more
to manually analyze the imagery volume captured in a single day. Automated
image classification using machine learning tools will allow analysis at speeds
and scales previously thought impossible.

3 Dataset

We have used the plankton image dataset provided as a part of Data Science
Bowl Competition.

The images in the dataset were captured using ISIIS and were processed by a
segmentation algorithm to isolate individual organisms. They were then labelled
by a trained team at the Hatfield Marine Science Center. Approximately 30,000
of these images were provided as a training set. A test test of approximately
130,000 images was also provided for the competition.

4

Challenges

As mentioned on the Data Science Bowl competition page[1], several character-
istics of this problem make this classification difficult:

1.

5

There are many different species, ranging from the smallest single-celled
protists to copepods, larval fish, and larger jellies.

. Representatives from each taxon can have any orientation within 3-D

space.

. The ocean is replete with detritus (often decomposing plant or animal

matter that scientists like to call “whale snot”) and fecal pellets that have
no taxonomic identification but are important in other marine processes.

Some images are so noisy or ambiguous that experts have a difficult time
labeling them. Some amount of noise in the ground truth is thus in-
evitable.

The presence of ”unknown” classes require models to handle the special
cases of unidentifiable objects.

Previous Work and Approaches

While applying machine learning to image recognition, the image is first pro-
cessed and converted to a feature representation using various feature extraction
techniques. After that, various multi class classification algorithms can be ap-
plied on the extracted features to train a model.

Feature Learning
g > - H
= . Representation Algorithm

Common feature extraction methods include:

e Features for vision like Scale Invariant Feature Transform (SIFT), Gist

and Histogram of Oriented Gradients (HOG) etc.

V. 1" .
ABBLEG
‘\4-?'1‘ - -
- MUAERE
g = = e
HBEEOATINE
NEEn 2
NS &+ = d
Image gradients
SIFT [3] GIST [4]

HOG [5]

e Domain dependent hand crafted features

e Feature Learning Approaches like Convolutional Neural Networks that
learn features from the image

Some of the commonly used algorithms for multi class classification are
e SVM
e SoftMax

Deep learning approaches have shown good results for computer vision and
object recognition on a variety of datasets. These approaches are inspired by
the “One Learning Algorithm” hypothesis according to which any part of the
brain is capable of learning the functionality of any other part of the brain.

One of the first successful implementation of Deep Learning for image recog-
nition was shown by Hinton and others in their paper “ImageNet Classification
with Deep Convolutional Neural Networks” [10]. They showed an improve-
ment of around 8% on the ImageNet dataset [11] over the previous best results.
Since then, deep learning has been put to use successfully on a variety of image
datasets including MNIST, CIFAR-10, CIFAR-100, SVHN and ImageNet. They
have outperformed the traditional methods by large amounts for a variety of
computer vision tasks.

This inspired us to use Convolutional Neural Networks for plankton image
classification.

6 Methodology

We preprocessed the data to make it more suitable for our use case. Then, we
performed data augmentation to increase the size of dataset artificially. As the
first step, we applied a Random Forest approach with hand crafted feature and
image pixels as training features. After that, we implemented a Convolutional
Neural Network and a Dropout Network for image classification. The methods
are described in more detail below.

6.1 Data Preprocessing

Data preprocessing was essential before training a model as the images had
varying sizes and therefore they could not be used directly to learn a model.
Also, we had to scale down the high resolution images since training with large
images was infeasible. Also, some plankton classes had very few labelled images
and so data augmentation was required to generate sufficient data for these
classes.

18 T T T

16 8

14 4

12 4

10 .

Number of classes

o | n

500 1000 1500 2000
Size of train data

Figure 1: Data size among various classes

e We added padding to images thus converting them to a square shape.
This helped in preserving the width to height ratio. It also helped prevent
possible irregularities in plankton shapes which may arise during rotation
and resizing of images.

We scaled down the size of all images (25x25 for random forest and 48x48
for convnets) as training a model with larger images would have been
infeasible.

e We added artificial data by performing data augmentation since some
classes had very few training images (Figure 1). For data augmentation,
images were rotated by random angles to produce new images. Apart
from creating more data, is also helped decrease model overfitting at the
cost of longer training period.

6.2 Random Forest

We observed that different plankton classes differed a lot on the basis of their
shape. In particular, we found that while some classes were easily separable,
some other classes had very similar length to width ratio.

10 10
mmm trichodesmium_puff
[chaetognath_other

[
I copepod_cyclopoid_oithona_eggs
[protist_other

0.0 0.2 0.4 0.6 0.8 10 .0 0.2 0.4 0.6 0.8 1.0
Width/Length Ratio Width/Length Ratio

Figure 2: Class Separation based on width to height ratio

Given an image, the algorithm for finding the ratio first identifies the region
where plankton is present. It then extracts this glob from the image and finds
the axis along which the plankton is aligned. The major axis is taken in the
direction of maximum variation and minor axis is taken perpendicular to it.
These axis are then used to calculate the length to width ratio.

For the Random Forest algorithm, the images were first resized to 25x25.
The 625 pixel values and length to width ratio was used for training the algo-
rithm. The number of trees was set to 100. It did not perform well and the
logloss value obtained by it was 3.72 which was only a minor improvement over
the baseline solution of 4.79.

Our Random Forest code is a modified and tweaked version of the benchmark
code [2] provided by Kaggle.

6.3 Convolutional Neural Network

Conv1 Conv2 Conv3 Conv4 Convs Fullé Full7 Fullg
4x4x48 3x3x96 3x3x96 2x2x128 3x3x128 256 256 121
Stride 1 Stride 1 Stride 1 Stride 1 Stride 1 Dropout Dropout SoftMax
Pad 2 Pad 1 Pad 1

RelLU RelLU RelLU RelLU

Figure 3: CNN Architecture

6.3.1 Network Description

The network used by us is similar to Hinton’s ImageNet architecture[11]. It
contains 8 weight layers (5 convolutional and 3 fully connected layers). The
output of last fully-connected layer is fed to 121 way softmax thus producing a
probabilistic distribution over the class labels.

We used Rectified Linear Unit (ReLLU) activation function because networks
with ReLUs consistently learn several times faster than equivalent networks with
saturating neurons as shown in “ImageNet Classification with Deep Convolu-
tional Neural Network”[11]. The authors showed that a four layer convolutional
neural network with ReLUs reaches a 25% training error rate on CIFAR-10 six
times faster than an equivalent network with tanh neurons.

0.¥s
& 05
3 N\
B i
@ -
4 - - _
g -
E 025 e
=
i . ' . ' .
i 5 10 1 20 25 30 35 40

Epochs

Figure 4: Training error rate with ReLU(solid line) and tanh(dashed line) neu-
rons [11]

We also added Dropout in two layers to prevent overfitting and learn more
robust features. While training, dropout removes neurons from the network with
a probability of 0.5. These “dropped” neurons do not participate in forward pass
and backpropagation. Thus, different architecture is presented to different input
images thus reducing complex co-adaptations since neurons can no longer rely
on each other’s presence.

6.3.2 Training

The network is fed scaled down images of size 48x48. We used offline data
augmentation for reasons highlighted in the data preprocessing subsection. The
training time on Amazon Web Services (AWS) instance with NVIDIA GPU
(having 1536 CUDA cores) was 20 minutes when run for 45 epochs. Our convnet
code is a modified version of the examples provided by CXXNET/6].

We stopped training after 45 epochs since we stopped observing accuracy
improvements with each epoch. The graph for training error started to flatten
and the network became more prone to overfitting.

0.8

0.7

Training Error
o
o

=]
o

0.4+

0.3

0 5 10 15 20 25 30 35 40 45
Epoch Round

Figure 5: Training error v/s number of epochs

6.4 Maxout Network

Convi Conv2 Conv3 Conv4 Convs Convé Full? Fullg Fullg
4x4x32 4x4x64 3x3x128 3x3x128 3x3x256 3x3x256 1024 2048 121

Stride 2 Stride 2 Stride 2 Stride 3 Stride 2 Stride 2 Maxout Maxout SoftMax
Pad 0 Pad 3 Pad 3 Pad 3 Pad 2 Pad 2

Figure 6: Maxout Network Architecture

6.4.1 Network Description

The network used by us is similar to Bengio’s Dropout Network [12]. It contains
9 weight layers (6 convolutional and 3 fully connected layers).

It uses Maxout activation function which has been shown to leverage dropout
more effectively[12]. The output of a maxout unit which is the max of a set of
inputs can approximate arbitrary convex functions.

Rectifier Absolute value
T R

Figure 7: Graphical depiction of how maxout activation function can imple-
ment ReLU, absolute value rectifier, and approximate the quadratic activation
function [12]

6.4.2 Training

The network is fed scaled down images of size 48x48. We also used real time
data augmentation other than offline data augmentation. In real time data aug-
mentation, the image is transformed slightly (rotation, translation etc.) before
being fed to the network for training. Thus, the network sees a different im-
age each time while training thus reducing overfitting. The training time on
Amazon Web Services (AWS) instance with NVIDIA GPU (having 1536 CUDA
cores) was 9 hours when run for 40 epochs. Our convnet code is a modified
version of dkaylor’s code written using pylearn2 for the same competition [7].

1T EEL: d.'.'--
Rl FAs L s

Figure 8: Visualization of weights learned in Convolutional Layer

The figure above shows some of the weights learned in the Convolutional
Layer of the Dropout Network. On observing closely, it appears that the network
is able to learn concepts like edge detectors, corner detectors etc. in addition to
plankton specific filters.

7 Results

Being a classification problem with 121 different classes, the task of image clas-
sification was not easy. Also, accuracy is not a good measure of the effectiveness
of a method. This is because as shown in Fig 1, some classes have large num-
ber of images compared to other classes and hence predicting more frequently
occurring classes will give good cross validation accuracies.

A better performance measure is the multi-class logarithmic loss function [1]
which heavily penalizes if the algorithm wrongly predict one class with either
very high or very low probability.

| NoM
logloss = - Z Z Yi; log pi;

i=1 j=1

Where N is the number of images in the test set (or cross validation set) , M is
the number of class labels, log is the natural logarithm, y;; is 1 if observation i is
in class j and 0 otherwise, and p;; is the predicted probability that observation
i belongs to class j. Hence, a lower logloss value means better accuracy.

Method Accuracy Logloss Error

Random Forest 44% 3.721
CNN + Dropout 65% 1.303
Maxout 74% 0.687
Winning Team 81% 0.566

Table 1: Accuracy and logloss error for various methods

All evidences seem to suggest that training a deeper network with more
data could improve our accuracy even further. The winning team in this contest
obtained a classification accuracy of 81.52%. However, their winning model took
70 hours to train on an approximately 3 times more powerful GPU. Training on
such large scales was infeasible for us.

References

[1] Data Science Bowl Challenge
http://www.datasciencebowl.com/
www.kaggle.com/c/datasciencebowl

[2] Data Science Bowl Challenge
www.kaggle.com/c/datasciencebowl/details/tutorial

[3] Tombone’s computer vision blog
http://quantombone.blogspot.in/2015/01/from-feature-descriptors-to-deep.html

[4] Andrew Ng’s deep learning talk
http://cs229.stanford.edu/materials/CS229-DeepLearning. pdf

[5] Visualizing Object Detection Features
http://web.mit.edu/vondrick/ihog/

[6] CXXNET a fast, concise, distributed deep learning framework
https://github.com/dmlc/cxxnet

[7] Using dropout in pylearn2
https://github.com/dkaylor/datasciencebowl

[8] Theano, a Python library for fast and efficient evaluation of mathematical
expressions involving multi-dimensional arrays over GPUs
http://deeplearning.net/software/theano/

[9] Ciresan, Meier, Masci, Gambardella, Schmidhuber Flexible, High Per-
formance Convolutional Neural Networks for Image Classification. IJCAI
Proceedings-International Joint Conference on Artificial Intelligence. Vol.
22. No. 1. 2011.

[10] Lecun Y. , Bottou L. , Bengio Y. , Haffner P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11),2278 -
2324,1998

10

[11] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi-
fication with deep convolutional neural networks. Advances in neural infor-
mation processing systems. 2012.

[12] Goodfellow, Ian J and Warde-Farley, David and Mirza, Mehdi
and Courville, Aaron and Bengio, Yoshua, Mazout networks preprint
1302.4389,2013

11

