



### Presentation on

# Trajectory (Motion) estimation of Autonomously Guided vehicle using **Visual Odometry**

By

Ashish Kumar

M.Tech 1<sup>st</sup> Year

EE, IIT Kanpur

Guide: Prof. Amitabha Mukherjee Subject : Artificial Intelligence (CS365A) Session: 2014-2015

# Trajectory (Motion) estimation of Autonomously Guided vehicle using Visual Odometry



#### • <u>Odometry:</u>

Odometry is process of finding motion parameters using information from various kinds of sources like IMUs, optical encoders.

• Visual Odometry:

When the sensor used in odometry process is a visual sensor (camera), then

it is called Visual odometry



INPUT

#### OUTPUT



Image Courtesy: DavideScaramuzza@ieee.org

#### Aim:



To find camera poses from set of images taken at discrete interval

#### How do we do that:

We have to find a Transormation matrix which relates two image frames i.e. how the two frames are rotated and translated from each other.

let set of images be  $\{I_0, I_1, I_2, ..., I_{k-1}, I_k\}$ , camera poses be  $\{C_0, C_1, C_2, ..., C_{k-1}, C_k\}$ 

and transformation matrix is given by

 $T_{k,k-1} = \begin{bmatrix} R_{k,k-1} & t_{k,k-1} \\ 0 & 1 \end{bmatrix}$ 

where:

 $T_{k,k-1}$  is homogenous transformation matrix between images  $I_k$  and  $I_{k-1}$ .  $R_{k,k-1}$ ,  $t_{k,k-1}$  are rotation and translation matrix between images  $I_k$  and  $I_{k-1}$ .





Image Courtesy: "Learning OpenCV, O'REILLY"



#### • A snap shot of my Application:



# 1<sup>st</sup> image shows inliers ,outliers both. 2<sup>nd</sup> image shows only inliers after using RANSAC.





Matches Before RANSAC

Matches After RANSAC



#### **Motion Estimation:**





Motion estimation is done by finding Essential matrix, which is composed of  $R_{k,k-1}$ ,  $t_{k,k-1}$ .

$$E = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \begin{bmatrix} R_{k,k-1} \\ R_{k,k-1} \end{bmatrix}$$

"E" matrix can be computed using various methods like RANSAC, Normalized 8 point algorithm, Normalized 7 point algorithm, Nister's 5 point algorithm. I have used RANSAC in conjunction with Normalized 8 point algo.

Then 'E' is decomposed into above to matrices using SVD and then we have 'R' and 't' matrix and we can form 'T' matrix from it.

## **Camera Pose:**

then



# Now Concatenate all the transformation matrices. let $C_k$ be current pose $C_k = T_{k,k-1} * C_{k-1}$



Image Courtesy: "Visual Odometry: Part I - The First 30 Years and Fundamentals"

#### **Various Frames of References:**





Image Courtesy: "The KITTI Vision Benchmark suite"

## Acceleration, Velocity, X, Y, Z:





#### Some Pictures of results









Results of program written in Visual Basic with EmguCV

Results of program written in MATLAB

Ground truth

## **Data Set:**





- 1. Karlsruhe institute of Technology, Chicago (Technogical research institute of TYOTA for Autonoumous vehicles)
- 2. Raw 443 unrectified gray scale images of size 1392 x 512 of .png format.
- 3. Images are captured in City.

## **Softwares Used:**

- 1. MATLAB 2013, MathWorks.
- 2. Visual Studio 2013 Express Edition for Visual Basic.
- 3. EmguCV , a .NET wrapper of OpenCV binaries.

#### **References:**

Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urtasun. Vsion meets Robotics: *The KITTI dataset*. In Journal "International Jourani of Robotics Research" (IJRR); 2013
 Scaramuzza, D., Fraundorfer, F., *Visual Odometry: Part I - The First 30 Years and Fundamentals*, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011.
 Fraundorfer, F., Scaramuzza, D., *Visual Odometry: Part II - Matching, Robustness, and Applications*, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012.
 David Niste' r, Member, IEEE, *"An Efficient Solution to the Five-Point Relative Pose Problem"*, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004
 *Multiple View Geometry in Computer Vision 2<sup>nd</sup> Edition by* Richard Hartley Australian National University, Canberra, Australia and Andrew Zisserman University of Oxford, UK
 H.C. Longuet, Higgins *"A computer algorithm for reconstructing a scene from two projections"*.