
A

Project Report On

Trajectory (Motion) Estimation Of Autonomously Guided

Vehicle Using Visual Odometry

By

Ashish Kumar, Group -12, Roll No. 14104023

M.Tech, EE, (2014-1015) ,IIT Kanpur

Artificial Intelligence (CS365A)

Guide- Prof. Amitabha Mukharjee

Abstract: Visual odometry is a technique to

determine coordinates of a vehicle or any

object by using surrounding visual

information. The approach is revolutionary

for small autonomously guided vehicles.

Because in indoors performance is very poor.

And IMUs at small scale are very sensitive to

noise. And IMUs can also give unexpected

results which may lead to erroneous motion

estimation. Technique utilizes some state of

the art techniques like feature detection,

tracking and some mathematics of camera

theory.

I. INTRODUCTION

 Odometry is a process of estimating

motion parameters using various kinds of

sensors like IMUs, GPS. When we do this using

visual information (Images), it is called visual

odometry. The term Visual Odometry was first

used by David D. Nister in 2004[1]. Which was

named so because it is similar to Wheel

odometry, in which we integrate the angle of the

wheels over time. In Visual Odometry we

integrate images over time. Problem with wheel

odomtery is “wheel slip”. Which if not

incorporated in the estimation, can lead to

highly erroneous results.

 Visual odometry was first used in

NASA’s Mars rover “Phoenix” and

“Opportunity”. And today a lot of research is

going on in this field.

 So precisely in this particular

application of visual odometry, we estimate

trajectory covered by autonoumous ground

vehicles (UGV-unmanned ground vehicles)[1].

we’ll be given some images captured from

camera mounted on the UGV and I need to

preccess them through visual odometry system.

Visual odometry system involves a various step

process which in turn includes feature

detection, feature matching or tracking,

RANSAC, motion estimation and offline

adjustment. Odometry can be done by a

monocular camera or stereo camera. Stereo

camera often provides better results due to less

reconstruction errors involved in estimating

motion.

II. A BRIEF INTRODUCTION

TO WHAT I HAVE DONE
 I Downloaded data set of 443 images

from Karlsruhe Institute of technology,

Chicago, which is technological institute of

TOYOTA in area of autonomous vehicles

research[6].

 I went through the maths of the system

given in [1],[2],[3],[4],[5].Actually there is a

lot of maths involved in this project but it is

quite interesting. The maths is from two

different parts. One from images processing and

another from camera theory. Combining these

two gives birth to this beautiful project.

 Then I wrote the whole program in

MATLAB to test the algorithm. Used Some

inbuilt functions of MATLAB like feature

detection, matching, because these are highly

optimized function.

 After this I wrote the whole code in

Visual basic .NET for real time implementation

using EmguCV (.NET wrapper of

OpenCV)[7]. Then I Interfaced MATLAB with

Visual basic to plot trajectory graphs.

 I have also implemented code using

feature matching and feature tracking. The later

is giving very good results.

III. PROBLEM FORMULATION

Aim: To estimate camera poses from set of

images taken at discrete interval

Indirectly: We have to find a Transormation

matrix which relates two image frames i.e. how

the two frames are rotated and translated from

each other.

 Reffering to [1], let a set of images be

{𝐼0, 𝐼1, 𝐼2…..𝐼𝑘−1,𝐼𝑘} ,camera poses be

{𝐶0, 𝐶1, 𝐶2…..𝐶𝑘−1,𝐶𝑘} and transformation

matrix is given by

here 𝑇𝑘,𝑘−1 is homogenous transformation

matrix between images 𝐼𝑘 and 𝐼𝑘−1. 𝑅𝑘,𝑘−1 ,

𝑡𝑘,𝑘−1 are rotation and translation matrix

between images 𝐼𝑘 and 𝐼𝑘−1.

 Fig 1. Image Courtesy: “Learning OpenCV, O’REILLY”

 In the above figure, take 𝑂𝑙 , 𝑂𝑟 as

position of camera at time 𝑡1 , 𝑡2 , which can be

reffered as image_1 and image_2. As you can

see image_1 has been translated by a translation

vector of ‘T’ and rotated by rotational matrix

‘R’.

 ‘R’ is a matrix of 3x3 , ‘T’ is 3x1 vector

which represents translation in X,Y,Z direction

respectively and 𝑇𝑘,𝑘−1 4x4 matrix to combine

the effect of R and T.

 The camera pose at time 𝑡𝑘 is given by

 𝐶𝑘 = 𝑇𝑘,𝑘−1 * 𝐶𝑘−1 (2)

Fig 2. Image Courtesy: “Visual Odometry: Part I - The First

30 Years and Fundamentals”

 Fig 2 shows poses of a stereo

camera at different time instants. 𝐶𝑘−1 and 𝐶𝑘

are camera poses at time instants 𝑡𝑘−1 ,𝑡𝑘

respectively. For more information on

transformation refer to chapter 2 of [4].

 Let us suppose vehicle started (0,0,0) of

real world coordinate, then position of vehicle

at time 𝑡𝑘 is given by last column of matrix

𝑇𝑘,𝑘−1 whose last element is 1.

IV. PREREQUISITES

 Camera Theory.

 Strong Knowledge of Camera intrinsic

and extrinsic parameters.

 Spatial Transformation

 Image Basics

 Image Features

 Above are some topics which are required

you to gone through, because these terms will

be used frequently in subsequent explanations.

 For camera theory you can refer to [4],

which is known as Bible of camera theory. And

for Spatial transormations chapter 2 of [8] is

enough.

 Image Basics involves some basic

knowledge and working with multidimensional

matrices and RGB, Gray scale images. For this

a lot of online tutorials are available.

 For image features also, you can find best

tutorials on internet. But the feature I have used

will be described in a bit lesser detail.

 As we move on I’ll keep on introducing

new things and their details.

V. ALGORITHM

Fig3 Algorithm

𝑇𝑘,𝑘−1 = [
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1

0 1
] (1)

Feature detection
 (SIFT/SURF/FAST/Shi-Tomasi)

Feature Matching / Tracking

Outlier Removal using RANSAC

Motion Estimation Using Essential Matrix

Optional Windowed Bundle Adjustment [X]

]

a. Feature detection

 A feature in an image nothing but only a

point a interest. We apply mathematical

operations on those points only rather whole

image.

 A lot of feature detection algorithms are

available. We can choose any of them but for

this particular application I have tested SIFT,

FAST, FREAK, Harris, SURF, Shi-Tomasi.

 Motion estimation using SIFT, SURF,

FREAK takes a lot of computational time.

Where as Shi-Tomasi corners are computed in

lesser time and for motion estimation these

doesn’t eat much time.

 I used SIFT,SURF, FREAK for feature

matching and Shi-Tomasi, Harris for feature

tracking.

 Feature tracking provided very good results

then feature matching with drastic improve in

computation time.

Functions used (Objects in language) :

MATLAB:

1. detectSIFTFeatures

2. detectSURFFeatures

3. detectFASTFeatures

OpenCV:

1. SIFTDetector

2. SURFDetector

3. GFTTDetector

For more refer to documentation of EmguCV

[7].

b. (i) Feature Matching

 Suppose you have detected features 50

and 60 features in two consecutive images im1

and im2 respectively. Feature matching means

finding an approximate match of 50 features in

im1 to 60 features in im2.

 Precisely we want to know where these 50

features of image-1 are in image-2 (Camera-

1 ,Camera-3). These matches are called

correspondents. The matches can be found

using radial match or k-nearest neighbor match.

I have used K-NN.

 In K-NN we find distance of each of 50

features of image-1 from 60 feature of image-2.

Then we only retain the points (matches) which

are having distance between then below a

threshold. Threshold is set heuristically.

 For feature matching we need additional

functions.But these are not required in feature

tracking.

Functions used (Objects in language) :

MATLAB:

1. extractFeatures

2. matchFeatures

OpenCV:

1. ComputeDescriptorsRaw

2. knnMatch (FLANN class OpenCV)

b. (ii) Feature Tracking

 Difference between feature matching

and feature tracking is as follows. Feature

matching means independently finding features

in two frames and matching them. Whereas

feature tracking means finding features in one

image only and tracking them in subsequent

images[2]. It may happen that some feature may

get lost due to occlusion or out of field of view

of camera. So you have to add some new best

strong points. I have used feature tracking only

in OpenCV due to time constraint.

 For tracking first we detect best feature

called Shi-Tomasi features or

GoodFeaturesToTrack[10] and then use sparse

version of Kannade-Lucas-Tomasi tracker

using optical flow. For KLT refer to the original

implementation [9].

Functions used (Objects in language) :

OpenCV:

1. GFTTDetector

2. cvCalcOpticalFlowPyrLK

c. Outlier Removal using RANSAC

 From feature matching (tracking

depending what you have used) ,we have

obtained point correspondences (matches).

Some of the matches even after thresholding

may be wrong. The wrong matches are called

‘Outliers’ and correct ones are called ‘Inliers’.

 The outliers can greatly diminish

performance of Visual Odometry system. So

before motion estimation we have to remove

these outliers. Popular method is to use

RANSAC (Random Sampling And

Consenous).

 As reffered by [1], In brief RANSAC

works like this. Take any two correspondents

from the matches and fit a line between them.

Compute distance of remaining point from this

line. Save the points which are having distance

below a threshod. These are inliers. Keep on

repeating this method to obtain as many inliers

as you want.

 RANSAC is a non-determinstic

technique to obtain inliers. No of loops required

is given by

p= probability of success

ɛ = % of outliers in data

s = no of points by which model can be

instantiated

𝑁 =
lo g(1−𝑝)

lo g(1−(1−𝜀)𝑠)
 (3)

 Fig4. Image Courtesy: DavideScaramuzza@ieee.org

So after RANSAC we only have inliers.

 Fig 5. Snapshot of my application in .NET showing outliers

 Fig 6. Outliers removed using RANSAC

 Let Point correspondents are

denoted by 𝑥, 𝑥′ in 1st and 2nd image

respectively. 𝑥, 𝑥′ are 3x1 homogenous vector

i.e. 3rd element is equal to 1.

d. Motion Estimation

 Before we proceed to motion estimation,

it is required to get familiar with some of

camera concepts like its intrinsic and extrinsic

parameters. For Maths involved in Motion

estimation we’ll refer to [4]. Most of maths is

from Part II of [4].

 Intrinsic Parameters of camera is the

calibration matrix of camera which give you the

perspective projection. It is a 3x3 matrix

denoted by ‘K’.

 𝐾 = [
𝛼𝑢 0 𝑢0

0 𝛼𝑣 𝑣0

0 0 1

] (4)

𝛼𝑢, 𝛼𝑣 are the scale factor in x,y direction due

to perspective projection. 𝑢0, 𝑣0are center of

image.

 Next I’ll describe about various frames

of references i.e. world coordinate frame,

camera frame.

Fig7. Image Courtesy: “Visual Odometry: Part I - The First 30

Years and Fundamentals”

 The Image Frame may be rotated

w.r.t. world coordinate system (C) .let the

rotation be ‘R’ and translation be ‘t’. then a

matrix P=[R|t] is called extrinsic parameters

matrix. So let ‘x’ be a point in image plane w.r.t

frame of ref (I) and ‘X’ be a point w.r.t. world

coordinate system then

 x= KPX (5)

x is 3x1 homogenous vector.

K is 3x3 calibration matrix. P is 3x4 matrix and

X is 4x1 homogenous vector.

 So from here you can understand

that we have to estimate ‘R’ and ‘t’ w.r.t. a

frame of reference given by

 P=[
1 0 0 0
0 1 0 0
0 0 1 0

] (6)

 Refer to [4] for more detail on this.

Outliers

World coordinate origin

Image Frame origin

I

Only
Inliers

mailto:DavideScaramuzza@ieee.org

 (i) Estimating ‘R’and ‘t’

 There is something called essential

matrix which is combination of ‘R’ and ‘t’. and

is given by

𝐸 = [

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0
] [𝑅𝑘,𝑘−1] (7)

 So now you may have understood the

point that we have to estimate this essential

matrix and then break into ‘R’ and ‘t’.

 To estimate ‘E’ matrix we have a lot of

algorithms available. For example Normalized

8 point algorithm, 7 point algorithm, Nister’s 5

point algorithm, RANSAC-1 point algorithm.

 A condition of epipolar geometry is

satisfied by this ‘E’ matrix. Which is called

epipolar constraint and is given by

 From RANSAC output we have 𝑥, 𝑥′.
We put 𝑥, 𝑥′ in above equation and estimate E.

You might be thinking that I have points to

solve the equation, then why I am saying that

“we are esitimating ‘E’”? This is because

RANSAC output is non deterministic. So we

have only an estimate of correct

correspondences.

 I have used Normalized 8 point

algorithm.

Functions used (Objects in language) :

MATLAB:

1. estimateFundamentalMatrix

OpenCV

2. cvFindFundamentalMat

 Lets imagine that first camera pose is

denoted by P and second by P’. Where ‘P’ is of

the form given by (6) and P’ = [R|t]. where ‘R’

and ‘t’ are are rotation and translation vector by

which camera-2 has been transformed w.r.t.

camera-1.

 Aim is to estimate ‘R’ and ‘t’ from ‘E’

matrix. So for this we take SVD of ‘E’ matrix.

There is special method to take SVD of

essential matrix. For which you can refer to

appendix B refer to [3].

 As given in [1], Let SVD of ‘E’ matrix is

given by 𝑈D𝑉𝑇and a matrix ‘W’ is given by

then we get four solutions given by

 Out of these four solutions only one

corresponds to true configuration. And these

four solutions corresponds to configurations in

space as given below

Fig 8. Image Courtesy: “Hartley, Zisserman - Multiple View

Geometry in Computer Vision ”

 Now we have to select only one correct

configuration out of these four. To do this we

use a variant of direct linear transform as given

in chapter 12 of [4] on page no 312.

 DLT is used to triangulate a point.

Means finding x,y,z of an image point in world

coordinate system. After triangulation we put a

constraint on the triangulated point that it must

be in front of both of the cameras. This is chiral

constraint given in [3].

 Since this constraint will be fulfilled

by only one configuration ,so now we have ‘R’

and ‘t’ which relates camera-1 and camera-2.

The process is repeated for subsequent images

and at any time we can tell X, Y, Z coordinate

of the vehicle w.r.t. the point from it started.

 Now we concatenate all the 𝑇𝑘,𝑘−1

matrices to obtain position on 𝑁𝑡ℎ frame w.r.t.

the point from where the vehicle started. So

position of 𝑁𝑡ℎ frame is w.r.t. to starting point

is given by

𝑇 = 𝑇 1
0 𝑇2

 1 𝑇 3
 2 … … . . 𝑇 (11)𝑁

𝑁−1
𝑁
0

 𝑇 = 𝑇−1 (12)𝑁−1
𝑁

𝑁
𝑁−1

So let us take starting point be (0,0,0). And ‘R’

and ‘t’ be the correct configuration of camera-2

w.r.t. camera-1 . Then location of camera-2

w.r.t. is given by

 𝑋 = [𝑅|𝑡]−1[0,0,0,1]𝑇

 ‘𝑋′ is (X,Y,Z) of camera-2 w.r.t frame of

reference of camera-1

𝑥′𝑇𝐸𝑥 = 0 (8)

𝑊𝑇 = [
0 ±1 0

∓1 0 0
0 0 0

] (9)

𝑅 = 𝑈(±𝑊𝑇)𝑉𝑇

 𝑡 = ±[𝑢13, 𝑢23,𝑢33]
 (10)

b. Optional Bundle Adjustment

 As name suggests it is optional to use.

Although I havn’t used it but I’ll explain in short

what it is. For more details on it please refer to

[2].

 Bundle means set of transformation

matrices. We take previous ‘m’ transformation

matrix to find next transformation matrix. This

eliminates disparity problem if frames are too

close.

 As described in [2] ,In fig 9 uncertainity of pose

𝐶𝑘 is combination o uncertainity in 𝐶𝑘−1 and

𝑇𝑘,𝑘−1.

Fig 9. Image Courtesy: Visual Odometry: Part II - Matching,

Robustness, and Applications

 And we are done. Now its time to have a look on my program’s results. I used DATA SET from

KITTI [7], Karlsruhe Institute of technology,Chicago. Which has color as well as grayscale images in

separate folders.They also have provided ground truth data(IMU data, GPS data), calibration matrix.

Ground truth is used to compare results. I’ll Show my results both using feature matching and feature

tracking.

Results

Car Used In Capturing Images

 Fig 10. Image Courtesy: “The KITTI Vision Benchmark suite” Fig 11. Image Courtesy: “The KITTI Vision Benchmark suite”

 From fig 10 you can see that according to

camera (Red) forward direction is ‘Z’ axis ,left

is ‘X’ and ‘Y’ is pointing downwards. And for

IMU(Green) ‘X’ is pointing forward,’Y’ is

leftward and ‘Z’ is pointing upward. So

according to ground truth ‘X’ compnents will

be the direction of motion.

Some SnapShots of my .NET application

 Fig 12. Feature matching Technique using FAST detection and SURF extraction on DATA SET images

Fig 13. Feature Tracking Technique using Shi-Tomasi features detection and Sparse version of Kannade-Lucas-Tomasi Tracking on DATA SET

images

Fig 14. Feature Tracking Technique using Shi-Tomasi features detection and Sparse version of Kannade-Lucas-Tomasi Tracking on DATA SET

images

Shi Tomasi Features

Fig 15. Feature Tracking Technique using Shi-Tomasi features detection and Sparse version of Kannade-Lucas-Tomasi Tracking on Live camera

Ground truth

 Fig 16 Ground Truth provided by IMU and GPS mounted on the Car

Ax,Vx - Acceleration, velocity in x direction.

Ay,Vy - Acceleration, velocity in y direction.

Az,Vz - Acceleration, velocity in z direction.

X - X coordinate of Vehicle

Y - Y coordinate of Vehicle

Z - Z coordinate of Vehicle

Fig17 Results of OpenCV using feature matching Results of MATLAB using feature matching Ground Truth

 Fig18 Results of OpenCV using feature tracker

 Difference between the results of OpenCV for

matching and tracking is the part where car

stops for a couple of seconds. In feature

matching, I was getting a non-zero translation

even the car was stopped. But Using feature

tracking I got a nearly zero translation when car

was stopped.You can notice the difference in

The results of OpenCV by the arrow tip. In

feature matching results, you can see some

pixels outside of trajectory. Those are wrong

results. But in Feature tracking this is removed.

Data Set

1. Karlsruhe institute of Technology, Chicago

(Technogical research institute of TOYOTA

for Autonoumous vehicles)

2. Raw 443 unrectified gray scale images of

size 1392 x 512 of .png format.3. Images are

captured in City.

Softwares Used

1. MATLAB 2013, MathWorks.

2. Visual Studio 2013 Express Edition for

Visual Basic.

3. EmguCV , a .NET wrapper of OpenCV

Binaries.

References:
[1]. Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I –

The First 30 Years and Fundamentals, IEEE Robotics and

Automation Magazine, Volume 18, issue 4, 2011.

[2]. Fraundorfer F, Scaramuzza, D., Visual Odometry: Part II -

Matching, Robustness, and Applications, IEEE Robotics and

Automation Magazine, Volume 19, issue 1, 2012.

[3]. David Niste ́r, Member, IEEE , “An Efficient Solution to the

Five-Point Relative Pose Problem” ,IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE,VOL. 26, NO. 6,

JUNE 2004
[4]. Multiple View Geometry in Computer Vision 2nd Edition by

Richard Hartley Australian National University, Canberra,

Australia and Andrew Zisserman University of Oxford, UK

[5]. H.C. Longuet, Higgins “A computer algorithm for

reconstructing a scene from two projections”.

[6]. Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel

Urtasun. Vsion meets Robotics: The KITTI dataset. In Journal

“International Jouranl of Robotics Research” (IJRR); 2013.

[7].“EmguCV” http://www.emgu.com/wiki/index.php/Main_Page

[8]. John J. Craig ,“Introduction to Robotics Mechanics and

control”.

[9]. https://www.ces.clemson.edu/~stb/klt/

[10]. Jianbo Shi, Karlo Tomasi, “Good Features to track” in IEEE

international conference on computer vision and. pattern

recognition ,Seattle, June 1994

Problamtic area due to wrong

readings of IMU but here

odometry gave good results

http://www.emgu.com/wiki/index.php/Main_Page
https://www.ces.clemson.edu/~stb/klt/

