Face Parts Labelling

CS365 - COURSE PROJECT

Under the guidance of Prof Amitabha Mukherjee Krishna Chaitanya (11372) Vikas jain (13788)

Introduction

AIM - Segmenting an image into three regions and labelling them with hair, skin and background labels

For e.g.

Original Image

Segmentation

Labelling

MOTIVATION - Used for mid-level computer vision task: Face recognition

Preliminaries

Conditional Random Field (CRF)

They are graphical models well suited to modelling local interactions among adjacent regions(e.g. superpixels).

The conditional distribution and the energy function can be defined as follows:

$$\begin{split} &P_{crf}(Y|X) \propto exp(-E_{crf}(Y,X)) \\ &E_{crf}(Y,X) = E_{node}\left(Y,X_V\right) + E_{edge}\left(Y,X_E\right), \ where \end{split}$$

Y refers to the region label, X_V refers to the region node feature vector, X_E refers to the edge region feature vector,

 E_{node} and E_{edge} are the linear functions of labels, feature vectors and edge weights(Γ, ψ).

Restricted Boltzmann Machine (RBM)

It is a bipartite undirected graphical model composed of visible and hidden layers of nodes. The joint distribution can be defined as follows:

$P_{rbm}(Y, h) \propto exp(-E_{rbm}(Y, h))$, where

Y refers to the label of the visible units, h refers to the label of the hidden units. E_{rbm} is a linear function of labels, edge weights(W) and biases(b,c) of the hidden and visible nodes.

APPROACH

We combine local consistency of CRF and global consistency (shape prior) of RBM to get the best labelling.

This is done by describing the condition likelihood of the labels Y given the **superpixels** features X as follows :

 $P_{gloc}(Y|X) \propto \sum_{h} exp(-E_{gloc}(Y, X, h))$

 $E_{qloc}(Y, X, h) = E_{crf}(Y, X) + E_{rbm}(Y, h)$, where the terms are as defined before.

The model parameters { Γ , Ψ , W, b, c} are trained to maximize the conditional log likelihood of the training data

$$\max_{(W,b,c,\Gamma,\psi)} \sum_{m=1}^{M} \log P_{gloc}(Y^{(m)}|X^{(m)})$$

ALGORITHM

LEARNING

- We maximize the conditional log likelihood using contrastive divergence.
- It relies on the approximation of the gradient of the log likelihood based on a short Markov chain.

INFERENCE

- Since the joint inference of superpixel labels and hidden nodes is intractable, we use mean-field approximation
- The approximated distribution is such that it minimizes the Kullback-Leibler distance between the approximate and original distribution.

Features of Superpixels

NODE FEATURES

- 1. Color
- 2. Position
- 3. Texture

EDGE FEATURES

- 1. Sum of probabilities of boundary along the border
- 2. Euclidean Distance between mean color histogram
- 3. Chi-squared distance between texture histograms

*Image from reference [1]

EXPERIMENT AND RESULTS

Number of Visible nodes - 576 (24×24) Number of hidden nodes - 400 Image Size - 250×250 pixels Number of Superpixels - 200-250 per image

Method	Accuracy	Error Reduction
CRF	93.2256%	-
GLOC	94.946%	25.39%
Original Image	CRF	GLOC

FURTHER WORK

- Creating a platform/Application to label a given image according to the training of the model.
- Extending the model to deeper architecture using Deep Boltzmann Machine(DBM).

REFERENCES

- Kae, Andrew, et al. "Augmenting CRFs with Boltzmann machine shape priors for image labeling." *Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on*. IEEE, 2013.
- Asia Fischer and Christian Igel. An introduction to restricted boltzmann machines. In Luis Alvarez, Marta Mejail, Luis Gomez, and Julio Jacobo, editors, *Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications*, volume 7441 of *Lecture Notes in Computer Science*, pages 14{36. Springer Berlin Heidelberg, 2012..
- Database used: Part Label Database http://vis-www.cs.umass.edu/lfw/part_labels/
- Code used: http://vis-www.cs.umass.edu/code/gloc/gloc.zip

THANK YOU

QUESTIONS??