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NEURAL NETS



4/4/2015 ai-presentation: Slides

http://home.iitk.ac.in/~chahuja/cs365/project/slides/#/3/1 1/1

WHY NEURAL NET FEATURES ?

DROPOUT

  The term “dropout” refers to dropping out units (hidden and visible) in a neural network. 

Have shown to work well for random weights in the DNN

structure.

Any set of features can be well learnt in a DNN setting

DBNN features give advantage over hand-crafted features
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HIDDEN MARKOV MODELS

*picture taken from wikipedia.org

A state-space model of the
given form
Takes data points sequentially
as states and trains the weights
accordingly
Each state generates a
probability distribution over the
outputs
Incorporates temporal
information and hence works
great with speech and music
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CLASSIFICATION

Random Forest (RF) classifier

Why RF classifier over NN classification ?

RFs do not overfit as compared to a typical DNN

RFs can classify non-metric spaces
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FLOWCHART
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NEURAL NETWORK STRUCTURE
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RESULTS
Training completed for genre classification

(weights and activation values obtained)

Need to test on test data to check results

Here cost 0 is the loss function value at the input,

cost 1 is the accuracy on the validation set. The

maximum validation accuracy achieved in 50

epochs was 0.62

Training with more epochs (the paper used 500)

should give much better results

Sigmoid function has been used as the output

mask for each node
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What Next?

Perform unsupervised learning to Deep
Belief networks to get a better feature
set
Compare results obtained from
features of DNN, DBN and HMM 
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