Reducing Dimensionality of Data Using Neural
Networks

Ayushman Singh Sisodiya

Indian Institute of Technology, Kanpur

Abstract. In this report I have described ways to reduce the dimen-
sionality of data using neural networks and also have how to overcome
the problems in training such a network. The main result of my project
revolves around the idea that there is a huge gap between the two pre-
training methods I have used.

Key words: Autoencoders, Pre-training, RBM’s, Stacked Autoencoders,
Cross-entropy

1 Introduction and Motivation'

As we all know data dimensionality reduction is a very well known and necessary
problem to solve. Many data can be represented in much lower dimension than
it is already in. As data is increasing at a very rapid rate storing and managing
is becoming more and more difficult. Other than this reducing dimensionality of
data has found its ways in many research related areas as a pre-processing step
or maximize discrimination. So many research has already been gone to achieve
this task effectively and efficiently.

Some of the most popular and common ways to do so are principal com-
ponent analysis (PCA), independent component analysis (ICA), locally linear
embeddings, Isomap etc. have been proposed. In most cases we need the orignal
data back from the reduced data. Many of the efficient algorithms have been
devised that reduce the dimensioality of data very effectively but are unable to
recover the original data. But the method we are going to describe is known to
be effectively reconstruct the original data.

1.1 Autoencoders

Auto encoders or auto-associative neural networks produce output which is same
as or say similar to its input with some constraints like bottle neck and tied
weights. The bottleneck constraint is in which one or more than one hidden
layer of the network has less nodes than the input layer. This constraint allows
the network to learn a reduced version of the input, which is what we want
to do. It has been shown that with linear activation of the nodes and with

! Disclaimer : This section is heavily inspired by Ankit Bhutani’s thesis[4]

2 Ayushman Singh Sisodiya

mean-squared error as the loss function for the network, it learns to extract the
principal components of the data.

The benefits of the deep neural networks over the shallower ones are very sig-
nificant but the implementation of deep neural networks is very costly in terms
of computation and memory usage until 2006. As deep neural networks were very
prone to problems like vanishing gradient descent and the stuck of optimization
in a local minima, So not much of progress was done before 2006. In 2006 [6]
Hinton introduced a pre-training method that initializes the weights close to
a good solution. It was proved that any gradient based method used to train
the network will only works well only if the initial weights are close to a good
solution[7]. Hinton described that Restricted Boltzmann Machines introduced
by smolensky [9] can be trained in a greedy manner to find good set of weights
to initialize the neural networks. A fine-tuning method will follow which gave
results which were very astonishing at that time.

Another way to pre-train the network to good initial weights is using shal-
low autoendcoders introduced by Bengio[3]. But the results obtained from this
method were not as good as were obtained by using RBM [1]. Although ini-
tializing weights of deep autoencoder using shallow autoencoder has not been
explored in detailed as mentioned in [4].

2 Datasets

I have used two datasets for this project. Both of them are described below.

2.1 MNIST

This is one of the most popular datasets. It has 70,000 binary images of 10
different classes. The size of each image is 28 x 28. The whole dataset of 70,000
images is split into 3 sets. The training set has 50,000 images. The validation
set has 10,000 images and the test data has 10,000 images. Some images from
the dataset are shown below. These images are taken from here

EEAdDNdR

Fig. 1. MNIST dataset sample images

2.2 2D-RobotArm

The dataset contains 23,968 binary images of 2 robot arms as shown in the
figure below. The image is 100 x 100. The length of the arm is 40 pixels and

http://andrew.gibiansky.com/blog/machine-learning/k-nearest-neighbors-simplest-machine-learning/

Autoencoders 3

width is 5 pixels. The first arm is allowed to be in any position whereas the 2nd
robot arm is restricted to angles between —105°and 105°. Sample images from
the dataset are shown below. These images are taken from [4]

Fig. 2. Sample images from 2D-robot-arm dataset

3 Some Basic Knowledge®

As I have already given brief description of the models we are using, but a
detailed explanation is required to really understant what is happening and
why. I will begin by explaning the basic structure of shallow autoencoder.

3.1 Shallow Autoencoder

As T have already mentioned, a neural network whose output is same or similar
to that of its input is called autoencoder. A shallow autoencoder is that in
which there is only one hidden layer or say total 3 layers, one input,one hidden
and one output. Any autoencoder with more than three layers is called Deep
Autoencoder. The activation function I have used is sigmoid function which is

1
1+ exp?

(1)

and the cosr function used is mean-squared error function. Another well known
and good cost function is reverse cross-entropy which is defied as follows

n

L(X,Z;6)=— Z(Jcilogzi + (1 —z;)(log(1 — 2))) (2)

i=1

This function works very well when the values are between 0 and 1, which is it in
our case. But we have used the mean squared error function. Baldi and Hornik [2]
showed that using linear activation function and at global minima the network
has extracted the first n principle components where n is the size of the hidden
layer with lowest number of nodes. But it is not the case with other activation
functions. For other activation functions the network is somehow forced to learn

2 Disclaimer : This section is heavily inspired by Ankit Bhutani’s thesis[4]

4 Ayushman Singh Sisodiya

a representation of input in low dimensional space.
I have already explained the bottle-neck constraint but didn’t really talked
about the tied weight constraint. In tied weight constraint we force the weights of

the decoder to be the transpose of the tied weights of the encoder. The encoder
and decoder part is shown in the figure below. This image is taken from here

output -

Tdecode
hidden -

Tencode

input

Fig. 3. Autoencoder

3.2 Denoising Autoencoder

In denoising autoencoder we basically add some noise to the input of the au-
toencoder but the output is same as the orignal input. The main reason behind
this heuristic is that we are forcing out network to learn the main underlying
structure in our input. This method was used by Vincent [1] to find good initial
weights.

3.3 Restricted Boltzmann Machine(RBM)

Restricted Boltzmann machine are basically a variant of Boltzmann Machine
with the restriction that the nodes in the same layer cannot have a connection
i.e. it forms a bipartite graph. RBM’s are said to learn probability distribution
over the set of inputs. The energy of the RBM is calculated by the formulae(taken
from wikipedia)

E(’U, h) = — Zaivi — ijhj — Z Z’ini’jhj (3)
i J i g

where w; ; is the weight matrix, h; is the hidden unit, v; is the visible unit,a;
is the visible unit offset and b; is the hidden layer offset. and the probability
distribution is given by

1
P(v,h) = Ee_E(”’h) (4)
The structure of RBM is shown Fig.4 This image is taken from here The most

commonly used process used for training RBM is contrastive divergence algo-
rithm [5]

http://kiyukuta.github.io/2013/08/20/hello_autoencoder.html
https://www.wikiwand.com/en/Restricted_Boltzmann_machine

Autoencoders 5

Hidden units

Visible units

Fig. 4. RBM Strucuture

4 Methodology

Here we will describe how to pre-train suing the models described above.

4.1 Pre-training using RBM

Let us suppose our architecture of neural network is ny — ny — nzg — no — ny.
Here we will use the methodology described in Hinton 2006 [7]. So we well start
by making a RBM with n; visible units and ny hidden units on all the training
data using the method described in [5]. Now we have cconverted all out input in
binary vector of size ny. Now we will take this as the input to another RBM of
with no as the visible units and ns as the hidden units and will do the same as
mentioned above. Now we have got W7 and Ws. Due to tied weights constraints
W3 = W3 and Wy = W{. After doing this we do what is called the fine-tuning
step. In that we do simple backpropogation to fine tune the weights. The image
clearly describes the method. After unfolding our RBM the network will look

Input

Fig. 5. RBM Pre-train

like this The above figures are taken from [4]

6 Ayushman Singh Sisodiya

r 7 e 72T roT 1717
W IH w2 H W3 H W3 M2 w2 M1 W1 MO

Input

Fig. 6. Autoencoder

4.2 Pre-training using shallow autoencoders

These are also used in a greedy layer wise fashion as described above in RBM’s.
Lets me explain it by using an example. Suppose the architecture is of the form
ny — ng — n3 — ng — ny. Than first we take n; and ny. Than make a shallow
autoencoder as ny —ny —ny. Train this on the training set. Than we take no and
n3 and make a shallow autoencoder of the form ny — n3 — no and train it on the
activations abtained from the first network and unfold the same way as dont in
RBM. For denoising one we just add some noise to the input and do the same
as described above. Followed by fine-tuning using backpropogation. The figure
below describes the method and is taken from here.

Stacked AutoEncoder Multilayer Perceptron
Out) Out
A
h3 -
Input >) h3
Autoencoder 3 h2
h2 h1
Input
g ——
Autoencoder 2
Out
h1
Input
Autoencoder 1

Fig. 7. Stacked Autoencoder

https://www.mql5.com/en/articles/1103

Autoencoders 7
5 Results

I have used the matlab library by R.B. Palm [§]

5.1 MNIST

The architecture we used for this dataset are -

a —> 784 — 500 — 250 — 30 — 250 — 500 — 784

b —> 784 — 1000 — 500 — 30 — 500 — 1000 — 784

and we have used 3 methods to pre-train them. They are -
1 - using RBM

2 - using Stacked way

3 - using Denoising Stacked

From now on we will refer to the architecture and its method from the num-
bers above. So if the architecture is 784 — 500 — 250 — 30 — 250 — 500 — 784 and
the pre-training method is RBM, then we will refer to it as a-1. This is just for
our convenience. First I will show the reconstruction by all 6 ways and than will
try to justify my results.

Fig. 8. Orignal Image

This image is constructed by me from the dataset available here
Now the reconstruction by all 6 methods are below. Note that I have trained
and pre-trained all 6 methods for 10 epochs

Fig. 9. By a-1 Fig. 10. By b-1 Fig. 11. By a-2 Fig. 12. By b-2 Fig. 13. By a-3 | Fig. 14. By b-3

Fig. 9. Reconstruction of the image by all 6 models

You can see the images formed are pretty good except for the case with b-2.
I have an explanation for this which I will give later.

http://yann.lecun.com/exdb/mnist/

8 Ayushman Singh Sisodiya

First we will try to visualize the weight of the pre-trained network for all 6
models. The visualization of the weights for different models for different epochs
are shown below

Fig. 10. RBM with architecture 784-100 and epoch-1

Fig. 11. RBM with architecture 784-100 and epoch-10

Autoencoders 9

You can see that the features learned after 10 epoch are more significant than
when learned after 1 epoch. You can see some strokes of the shapes of the figure.
This was for pre-training with RBM.

Fig. 12. stacked 784-100 epoch-1 and no noise

Fig. 13. stacked 784-100 epoch-10 and no noise

10 Ayushman Singh Sisodiya

The same argument can go for Fig. 12 and Fig. 13 also. Weight learnt gets
more and more significant as epochs increases.

Fig. 14. stacked 784-100 epoch-1 and noise

Fig. 15. stacked 784-100 epoch-10 and noise

Autoencoders 11

You can say the same for Fig. 14 and for Fig. 15 also.

Some Stats Reconstruction mean squared over test data for MNIST for various
architecture and pre-training methods are

RBM-784-500-250-30 for 10 epochs 5.0478

RBM-784-1000-500-30 for 10 epochs - 5.5902

Stacked-784-500-250-30 with 0.5 noise for 10 epochs - 3.3391
Stacked-784-500-250-30 with 0 noise for 10 epochs - 5.0929
Stacked-784-1000-500-30 with 0.5 noise for 10 epochs - 3.7217
Stacked-784-1000-500-30 with 0 noise for 10 epochs - 26.0131

Now I will try to explain these results as to why the stacked with 1000 nodes in
the 2nd layer performs so poorly. First of all it is well established that the nodes
in the second layer should be greater than that of the first layer, so as to reduce
in information loss. So by that means the model of stacked with 1000 in 2nd
layer should perform better than or atleast equal to the model of stacked with
500 units in the 2nd layer. The reason for that can be explained from the graphs
below. These graphs are the RBM error(in case of RBM) or mean squared error
in case of stacked.

75 T T T T T

0r &

G5 &

L B

a0 b

REM errar

45+ g

It B

30 1 1 1 1 1
1] 5 10 15 20 2 30

epochs

Fig. 16. Error Vs Epoch for RBM 784-1000

12

Ayushman Singh Sisodiya

REM errar

train error

70 T T T T T

60 —

el b

40+

35 1 1 1 1 1
1] 5 10 15 20 2 30

epochs

Fig. 17. Error Vs Epoch for RBM 784-100

46

42

40

36

34+

32
] 5 10 15 20 2 30
epochs

Fig. 18. Error Vs Epoch for stacked 784-1000 no noise

train error

train error

5.5

Autoencoders

4.5+

3a8F

5 10 15 20 25 30
epochs

Fig. 19. Error Vs Epoch for stacked 784-100 no noise

45

20

Fig

5 10 15 20 2 30
epochs

. 20. Error Vs Epoch for stacked 784-1000 with noise

13

14 Ayushman Singh Sisodiya

train error

a 5 10 15 20 25 30
epochs

Fig. 21. Error Vs Epoch for stacked 784-100 with noise

As we can see in case of RBM the curve nearly flattens out after 10 epochs.
For stacked noise it is the same, but for stacked with no noise for the model 784-
100 the graph underfits after 10 epochs, so if we would have trained it further
the results we got will be poorer. Now for the Stacked with 1000 units, you can
see that the error at 10 epoch is very high compared to other. So that is why
it performs so poorely. If I would have trained it more than it would have came
close to RBM.

5.2 2D-Robot Arm

As the image was 100 x 100. So the input vector is of size 10,000 which is very
large to be trained on my machine. So initially the architecture I was using is
10000 — 1000 — 500 — 30 — 500 — 1000 — 10000. The image is reconstructed by
me from the dataset available here

Sy

Fig. 22. Orignal Robot Image

http://home.iitk.ac.in/~ankitbhu/thesis/Datasets.zip

Autoencoders 15

The reconstructed image for the architecture defined above for rbm and
stacked are shown below

Fig. 23. rbm

Fig. 24. stacked

The problem here is that our network is learning the average of all the inputs.
I tried to find out why and came to the conclusion that as the information loss
from 10000 to 1000 units is huge. So I tried to pre-train the network using RBM
for architecture 10000 — 10000 and 10000 — 15000 and than tried to visualize the
weights but the results remain the same. It is shown in Fig.25

which was still the average of all the inputs. So I wrote a script which selected
only the images whose first arm is between 0° and 180° and the result is shown
in Fig.26.

So I had no intution why is this happening and so was not able to figure out.

16

Ayushman Singh Sisodiya

Fig. 25. rbm for 10000-10000

Fig. 26. rbm for 10000-10000

Autoencoders 17
6 Conclusion

There is huge gap between Stacked autoencoder and RBM. This need to be
filled. The fact that stacked requires more pre-training than RBM make stacked
much of less importance. Although their final results are comparable but stacked
need more of a computation. Many work has been done to bridge this gap which
includes alternate layer sparsity and intermediate fine-tuning and has achieved
some good results which are mentioned in [4].

18

Ayushman Singh Sisodiya

References

Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural networks, 2(1):53-58, 1989.
Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. Advances in neural information processing systems,
19:153, 2007.

Ankit Bhutani. Alternate Layer Sparsity and Intermediate Fine-tuning for Deep
Autoencoders. PhD thesis, INDIAN INSTITUTE OF TECHNOLOGY, KANPUR,
2014.

. Asja Fischer and Christian Igel. An introduction to restricted boltzmann machines.

In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Appli-
cations, pages 14-36. Springer, 2012.

. Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural computation, 18(7):1527-1554, 2006.

. Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of

data with neural networks. Science, 313(5786):504-507, 2006.

. R. B. Palm. Prediction as a candidate for learning deep hierarchical models of data,

2012.

. Paul Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. 1986.

	Reducing Dimensionality of Data Using Neural Networks
	Ayushman Singh Sisodiya

