Evolutionary Cube Solver

Anurag Misra Dept. of Computer Science and Engineering Indian Institute of Science and Technology Kanpur

RUBIK'S CUBE

- Classic 3*3*3 Rubik's Cube invented in 1974 by Erno Rubik
- Highly complex puzzle
- 4.3 * 10¹9 unique configurations
- Only 1 of these → "solved state"
- Smallest number of moves to solve ("God's Number") yet unknown
- Only few exact approaches exist
- Most (promising) based on group theory
- No valid evolutionary approach incorporating group theory until now

RUBIK'S CUBE

- Each face is referred to by its position (relative to users viewpoint)
- Common notation is F, R, U, B, L, D
- These also stand for a 90 degree clockwise turn
- Correspondingly Fi, Ri, Ui, Bi, Li, Di denote counter-clockwise 90degree turn.
- Moreover, F2, R2, U2, B2, L2, D2, correspond to clockwise half turns

How to go about it?

Idea

- Take human strategies and incorporate them into an evolutionary approach
- Use group theoretical background to reduce complexity

Result

- A more powerful evolutionary algorithm adapting human strategies and incorporating exact methods
- Symbiotic Intelligence

Advantage

 No need of terabytes of pre-calculated lookup tables

- Study human strategies
- Use group theoretic background
- Evolve an algorithm

Human strategy based genetic optimizer

Human strategy based genetic optimizer

Clockwise quarter turns		Half turns		Counter-clockwise quarter turns	
F	0	F2	6	F'	12
U	1	U2	7	U	13
R	2	R2	8	R	14
В	3	B2	9	B'	15
D	4	D2	10	D'	16
L	5	L2	11	Ľ	17

Human strategy based genetic optimizer

- Developed by Morgan Thistlewaite in 1984
- Divides the problem of solving the cube into 4-subproblems

Definition

$$\begin{array}{l} G_{0} = < F, R, U, B, L, D > \\ G_{1} = < F, U, B, D, R2, L2 > \\ G_{2} = < U, D, R2, L2, F2, B2 > \\ G_{3} = < F2, R2, U2, B2, L2, D2 > \\ G_{4} = I \\ \text{with } |G_{0}| > |G_{1}| > |G_{2}| > |G_{3}| > |G_{4}| \end{array}$$

- Transition cube from Gi \rightarrow Gi+1 only using moves from Gi
- Pre-calculated lookup-tables, solves in max. 52 moves

Definition

A subset $S \subseteq G$, is called a *generator* of G if any element of G can be written of a product of elements of S and their inverses. This is denoted by $G = \langle S \rangle$.

 Thus G(c) = <F, R, U, B, L, D> ("Cube Group") with |G(c)| = 4.3 * 10¹⁹

*

- $G(0), |G(0)| = 4.3 \times 10^{19}$
- G(1), |G(1)| = 2.11 * 10^16
- G(2), |G(2)| = 1.95 * 10^10

* no constraint

- * orientation of edge cubies
- * orientation of corner cubies transport of edge cubies to/from middle layer

• $G(3), |G(3)| = 6.63 \times 10^{5}$

State Complexity Reduction by Evolutionary Phase Transition

Evolution Strategy

Rubik's cube as an individual

RUBIK's cube

- Represented using 6 2D matrices
- Can be mutated only by applying move sequences
- Remembers all mutations undergone as a sequence list
- Automatically removes abundant moves after each mutation
- Remembers optimized sequence only

State Complexity Reduction by Evolutionary Phase Transition

 Scrambled cube is duplicated λ times

Evolutionary Phase Transition

 Each phase has it's own fitness function, counting - Wrong oriented/positioned cubies according to group constraints - Length of the remembered sequence list Weights adjustable Example $G(o) \rightarrow G(1)$: phase(o) fitness = weight.(w) + c w: = number of wrong oriented edges c: = length of the sequence list G(i) constraints satisfied if phase(i) fitness = c

State Complexity Reduction by Evolutionary Phase Transition

- Scrambled cube is duplicated λ times
- Yields first population after the phase transition
- Process is repeated until phase-4 is solved
- Selection pool generated by choosing best µ individuals from current population

References

- N El-Sourani, S. Hauke, M. Borschbach, "An Evolutionary Approach for Solving Rubik's Cube Incorporating Exact Methods", EvoApplications 2010
- N El-Sourani, M. Borshbach, "Design and Comparison of two Evolutionary Approaches for Solving Rubik's Cube"
- M Borshbach, C. Grelle, "Empirical Benchmarks of a Genetic Algorithm incorporating Human Strategies", University of Applied Sciences 2010

