Logic

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — Predicate | Predicate(Term,...) | Term = Term

ComplerSentence — (Sentence) | | Sentence |

— Sentence

Sentence N\ Sentence

Sentence vV Sentence

Sentence = Sentence
Sentence -+« Sentence
Quantifier Variable,... Sentence

Term — Function(Term,...)

| Constant
| Variable
Cluantifier — V| 3
FOL Constant — A| Xy | John| ---
Variable — a| x| s| ---
Syntax Predicate — True | False | After | Loves | Raining| ---
Function — Mother | Leftleg | ---

OPERATOR PRECEDENCE : —,= A, WV, =, &

Rules of Inference

1. Modus Ponens (M.P.) lp=q 2Zp .. 94
2. Modus Tollens (M.T.) lp=q 2-~g ..=p
lp=q 2g=r . p=r

3. Hypothetical Syllogism (H.5.)

4. Disjunctive Syllogism (D.5.) lpvg Z~p q

5. Constructive Dilemma (C.0.) 1L(p=q).(r=s) 2Zpvr S.gvs FOL
7. Simplification (Simp.) lLphg .p Ru |es

8. Conjunction (Conj.) lp Zg piq
[J
9. Addition (Add.} Lep —pva (Copl)
Rules of Substitution
10. De Morgan's Theorem (De M.) ~{p~q) = (~pV~q) ~p¥aq) = (~p~q)
11. Commutation (Com.) (pvq) = i(qvp) (p~q) = (g~ap)
12. Assodciation (Assoc.) [pVigVvr] = [pValvr] [pA (gAr)] = [{pAg) A
13. Distribution (Dist) [pAlgVn)] = [pAq)V(par)] [pvigAr] = [pva) A (pvr]
14 Double Negation (D.N.) pP=~-p
15. Transposition (Trans.) (p=q) = (~qg =~p)
16. Material Implication (M. Imp_) (p=ql=i~pVq)
17. Material Equivalence (M. Equiv.) (p=q) = [(p=q) ~ (q=p]] (p=q) = [[(pAg)V(~p A ~q)]
18. Exportation (Exp.) [lprg)=rI=[p=(qg=r]]

19. Tautology (Taut.) p=E(pvp) p=ipap)

1. Courses are either tough or boring.

2. Not all courses are boring.

3. Therefore there are tough courses.
(Cx, Tx, Bx,)

Dealing with Time

Translate into first-order logic :
* He left town in the morning

* Understanding leads to friendship

Russell & Norvig 3d ed:

8.1t08.4
9.1, 9.2 (skip 9.2.3 t0 9.4),
9.5 resolution (skip 9.5.4 - 9.5.5)

Problems
from
Nilsson
82

4.5 Show that (Fz)(¥x) P(x)=Q(z)]and (Fz)[(Ix)P(x)= Q(z)]
are equivalent.

4.6 Convert the following wifs to clause form:

(a) (Vx)[P(x)=P(x)]
(b) {~{(¥x)P(x)}} = (3x)}~P(x)]
(€) ~(¥x) P(x)=>{(MyP(y)=P(f(x,y)]
A~y Q(x.y)=P(yi}}}
(d) (VxH3Iy)
{([P(x,0)=Q(nx) N [Q(y.x)=S(x,p)]}
= (Ax XVy)[P(x,y)= S(x,y)]

4.7 Show by an example that the composition of substitutions is not
commutative.

4.8 Show that resolution is sound; that is, show that the resolvent of two
clauses logically follows from the two clauses,

4.9 Find the mgu of the set { P(x,z,y), P(w,u,w), P(A,u,u)}.

4.10 Explain why the following sets of literals do not unify:

(8) {P(f(x,x)A)P(f(p.f(p.A))A))
(b) { ~ P(A)P(x)}
(€) {P(f(A)x),P(x,A)}

Learning Logical Rules
Decision Trees

Duda and Hart, Ch.1
Russell & Norvig Ch. 18

Boolean Decision Trees

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

/ N\ / N\

No Yes No Yes

Attribute-based representations

 Examples described by attribute values (Boolean, discrete, continuous)
* E.g., situations where | will/won't wait for a table:

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X; T| F F T |Some| $$% F T | French| 0-10 T
Xo T F F T Full $ F F Thai |30-60 F
X3 F T F F |Some $ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai |10-30 T
X5 T F T F Full $5% F T |French| =60 F
Xg F| T F T |Some| $% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
Xs F| F F T |Some| %% T T | Thai | 0-10 T
Xo | F|l T | T| F [Fat| $ | T |F |Buger|>60]| F
X0 T T T T Full $%% F T | ltalian | 10-30 F
X1 F F F F | None $ F F | Thai | 0-10 F
X9 T T T T Full $ F F | Burger [30-60 T

e Classification of examples is positive (T) or negative (F)

Learning decision trees

Problem: decide whether to wait for a table at a restaurant,
based on the following attributes:

1.

© 0NV A WN

Alternate: is there an alternative restaurant nearby?

Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)
Price: price range (S, SS, SSS)

Raining: is it raining outside?

Reservation: have we made a reservation?

. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Continuous orthogonal domains

:E‘-gl

classification and regression trees CART
[Breiman 84] ID3: [Quinlan 86]

Expressiveness

* Decision trees can express any function of the input attributes.
 E.g., for Boolean functions, truth table row - path to leaf:

A B AxorB /\
F F F
= B B
. F F
F

Trivially, there is a consistent decision tree for any training set with one path to

leaf for each example (unless f nondeterministic in x) but it probably won't
generalize to new examples

Prefer to find more compact decision trees

Which attribute to use first?

[294, 35-] A1="7 [29+, 35-] A2="7

[21+4+, 5-] [B+, 30-] [184,33-] [11+,2-]

Gain(S; A) = expected reduction in entropy due to sorting on
attribute A

Choosing an attribute

* |dea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

000000 00000
000000 00000
Fatrons? Type?
MNone Some Full French ltalian Thai Burger
0000 00 O © 00 o0
0 000 @ @ 00 o0
B() [B()+ 4 B(—)+£B()] 0.541bits
* @Gain (Pat =b\—)—|— —
ain (Patrons) TRATLT:
* Gain(Type) = 1_[1-8(5)] =0 Information Gain is higher

for Patrons

Decision trees

* One possible representation for hypotheses
* E.g., hereis the “true” tree for deciding whether to wait:

Patrons7?
MNone m Full
WaitEstimate?
=60 30 ‘\\ 0=-10
Alternate? Hungry?
Tifffﬁﬁkgiia No Yes
Reservation? Frisat? Alernate?

Mo Yas MNo Yas
Raining?
Mo /7 % Yes

Information gain

A chosen attribute A divides the training set E into subsets
E,, ..., E,according to their values for A, where A has v

distinct values.

remainder(A) = Pith B(P,)
~ p+n p +n

* Information Gain (IG) or reduction in entropy from the
attribute test:

IG(A) = B(——) — remainder (A)
P+nN

* Choose the attribute with the largest IG

Decision tree learning

 Aim: find a small tree consistent with the training examples

* Idea: (recursively) choose "most significant" attribute as root of
(sub)tree

function DTL(examples, attributes, default) returns a decision tree

if exzamples is empty then return default
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MODE(ezamples)
else
best < CHOOSE- ATTRIBUTE(attributes, examples)
tree < a new decision tree with root test best
for each value v; of best do
examples; < {elements of examples with best = v;}
subtree +— DTL(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subiree
return [lree

Example contd.

* Decision tree learned from the 12 examples:

Patrons?

MNone m Full

e Substantially simpler than “true” tree---a more complex
hypothesis isn’t justified by small amount of data

Too many ways to order the tree

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions
= number of distinct truth tables with 2" rows = 22"

 E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2" rows = 22"

e E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry A —=Rain)?
e Each attribute can be in (positive), in (negative), or out
= 3" distinct conjunctive hypotheses
 More expressive hypothesis space
— increases chance that target function can be expressed
— increases number of hypotheses consistent with training set
—> may get worse predictions

Inductive Logic Programming

Review

 literal : atomic formula or its negation
* clause : disjunction of literals
 CNF : conjunction of clauses

Horn Clauses

 Horn clause : clause with single positive literal
e E.g. ~pV~qV~rvs
or equivalently:
DAQATr=Ss

* useful restriction on full first-order logic :
propositional Horn clauses are satisfiable in
polynomial time (HORNSAT)

* General proposition SAT: NP-complete

Prolog

* Prolog = Programming with Logic

e Works with Horn clauses
~pV~qV~rVs written as

S-Ppqr

e readas sif pandqgandr

* Resolving two Horn clauses always results in a
Horn clause

Example

* Set of Horn clauses:
[r,~p,~a] [p] [d]
 Goal:to prover
- Add goal negation ~r

[r,~p,~a] [a] [a] [~r]

Resolution refutation

[r,~p,~al [p] [a] [~r]
l |

[r.~al [q] [~1]
L

.1 [~]

[]

Logic Programming

 example of a logic program:
parent of (charles,george).
parent of (george,diana) .
parent of (bob,harry).
(

parent of (harry,elizabeth).
grandparent of (X,Y) :- parent of(X,2Z),
parent of (Z,Y).
 From the program, we can ask queries about
grandparents.
 Query: grandparent of (X,Y)?
* Answers:

* grandparent of (charles,diana).

* grandparent of (bob,elizabeth).

Forms of Reasoning

* Deduction: From causes to effect (PfEdiCtiOﬂ)

— facta, rulea=>b
INFER b

* Abduction: From effects to possible causes (Explanation)

— rule a => b, observe b
AN EXPLANATION a

* Induction: rrom correlated observations to rules (Lea rning)

— observe correlation betweena,, b, ...a,, b,
LEARNRULE a->b

Inductive Logic Programming :
Progol

Given:

Background knowledge (of the domain): facts
Examples (of the relation to be learned): facts

Try to learn
Theories (as a result of learning): rules

ILP : a form of machine learning where both the data
and the hypotheses are logical expressions

ILP — formal definitions

e @Given

— alogic program B representing background
knowledge

— aset of positive examples E*
— aset of negative examples E

* Find hypothesis H such that:

1. BUH Feforeverye e E*.
2. BUH #fforeveryfeE-.
3. B U His consistent.

Assume that B ¥ e for some e € E".

Example

* Background knowledge B:

— parent of (charles, george).
— parent of (george,diana) .
— parent of (bob, harry) .
— parent of (harry,elizabeth).

* Positive examples E*

— grandparent of (charles,diana).

— grandparent of (bob,elizabeth).

* Generate hypothesis H:

— grandparent of (X,Y) :- parent of (X, 7Z2),
parent of (Z,Y).

Rule Learning (Intuition)

 How to come up with a rule for grandparent of (x,¥)?
1. Take the example grandparent of (bob,elizabeth).

2. Find the subset of background knowledge relevant to this
exaﬁuﬂe:parent_of(bob,harry),
parent of (harry,elizabeth).

3. Form a rule from these facts
grandparent of (bob,elizabeth) :-

parent of (bob,harry), parent of (harry,elizabeth).
4. Generalize the rule
grandparent of (X,Y) :- parent of(X,Z), parent of(Z,Y).

5. Check if this rule is valid w.r.t the positive and the negative
examples

Progol Algorithm Outline

1. From a subset of positive examples, construct the
most specific rule r..

2. Based onr,, find a generalized form r, of r; so that
score(r,) has the highest value among all
candidates.

3. Remove all positive examples that are covered by
ry

4. Go tostep 1if there are still positive examples that
are not yet covered.

Scoring hypotheses

» score(r) is a measure of how well aruler
explains all the examples with preference
given to shorter rules.

— p, = number of +ve examples correctly deducible
fromr

— n, = number of -ve examples correctly deducible
fromr

— ¢, = number of body literals in rule r
— score(r)=p,—(n,+c,)

Decision Theory

Decision Theory

Inference step
Determine either p(t|x) or p(x,1)

Decision step
For given X, determine optimal t.

Minimum Expected LosS

Example: classify medical images as ‘cancer’ or ‘normal’

Loss matrix L:

Decision
cancer normal

cancer 0 1000
normal 1 0

Truth

Minimum Expected LosS

Li;p(x,Ck)dx

Regions R; are chosen to
minimize

E[L] = Lip(Cr|x)
k

Reject Option

10 p(C1|z) p(Ca|z)
0.0 \r P

reject region

Why Separate Inference and
Decision?

« Minimizing risk (loss matrix may change over time)
* Reject option

« Unbalanced class priors

« Combining models

Decision Theory for Regression

Inference step
Determine p(x%,t)

Decision step

For given x, make optimal
prediction, y(x), for t.

Loss function: E[L // (t,y(x))p(x,t) dx dt

The Squared Loss Function

_ / {y(x) — 1)%p(x, t) dx dt

{y(x) — t}* = {y(x) — E[t|x] + E[t|x] - t}"
= {y(x) — Et[x]}* + 2{y(x) — Eft|x|{E[t[x] - t} + {E[t[x] - t}*

L) = [{y(0 — Biti}* piyax + [var tfx) p) e

y(x) = Elt[x]

Performance measurement

. How do we know that h = f?

1. Use theorems of computational/statistical learning theory
2. Try honanew test set of examples

(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size
]_ T T T T . Irfllr
- "'u‘_'»""f“ wwf 1 ﬁi S

I "';"“J"_r;"*'*’"’l",",. ¢
0.9 1 MﬁfﬁM b/

7
08 F ¥

07 F |

% correct on test set

0.6 | |

0.5 R

0.4 : : '
0 20 40 60 80 100
Training set size

