Unsupervised Learning

Supervised vs. Unsupervised Learning

<*x*,*y*> : *x* = input, *y* = decision

x_i: often high-dimensional

Input spaces : often sparse

images: 100 x 100 pixels

Ack: A. Efros, original images from hormel corp.

Learning to represent

Supervised vs. Unsupervised Learning

x : often high-dimensional

$$f: x \rightarrow y$$

Difficulty: Much of the work in identifying a good *f*, is also that of discovering structure in **x**.

Representations in Al

Representation:

expected to be compact

Traditionally, given as part of the problem specs

(e.g. determined by a knowledge engineer)

Q. Can we learn representations?

Role of Perception?

Newborns (10-24 day old) in dark room work hard to position hand so it is visbile in a narrow beam of light. ...

Q. Can perception help in learning a representation?

[A. van der Meer, 1997: Keeping the arm in the limelight]

Learning to represent: robot motions

How to represent a "robot"? Must include: degrees of freedom (2) parameters (θ_1, θ_2) + rules / functions

A representation for an object is a "frame" or collection of parameters and function associated with the object.

Manifold Learning

Linear dimensionality reduction

project data onto subspace of maximum variance

PCA: principal components analysis

[A] = top eigenvectors of covariance matrix $[XX^T]$ Y = [A] X

Non-Linear Dimensionality Reduction: Manifolds

A manifold is a topological space which is locally Euclidean.

nbrhood N in Rⁿ ↔ ball B in R^d (homeomorphic)

Homeomorphic: Every x in N has a map to a y in BDimensionality of manifold = dEmbedding dimension = n

Manifolds

A manifold is a topological space which is locally Euclidean.

nbrhood in Rⁿ ↔ ball in R^d (homeomorphic) Dimensionality of manifold = d Embedding dimension = n

Real life data (e.g. images) : $D = 10^5$ motions = smooth variation of just a few parameters

DOFs = pose of faces \rightarrow d = 1

Ideally, d = number of varying parameters

Non-Linear Dimensionality Reduction (NLDR) algorithms: ISOMAP

Euclidean or Geodesic distance?

Geodesic = shortest path along manifold

Isomap Algorithm

- Identify neighbors.
 - points within epsilon-ball (ε -ball)
 - k nearest neighbors (k-NN)
- Construct neighborhood graph.
 - -- x connected to y if neighbor(x,y).
 - -- edge length = distance(x,y)
- Compute shortest path between nodes
 - Djkastra / Floyd-Warshall algorithm
- Construct a lower dimensional embedding.
 - Multi-Dimensional Scaling (MDS)

[Tenenbaum, de Silva and Langford 2001]

Residual Variance and Dimensionality

Short Circuits & Neighbourhood selection

neighbourhood size

too big: short-circuit errors too small: isolated patches

[saxena, gupta mukerjee 04]

Locally-Linear Embedding

Non-isometric maps

Fishbowl dataset : no isomorphic map to plane

- Conformal mappings: preserve angles, not distances
- Assume data is uniformly distributed in low dim

Kernel-PCA

PCA on non-linear data

PCA on non-linear data

Non-linear PCA?

PCA: top eigenvectors of covariance matrix $[XX^T]$

Kernel PCA: replace X by $\phi(x)$ $\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathrm{T}}$ Eigenvalue expression $Cv_i = \lambda_i v_i$ $\frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_n) \left\{ \phi(\mathbf{x}_n)^{\mathrm{T}} \mathbf{v}_i \right\} = \lambda_i \mathbf{v}_i$ To express in terms of kernel fn $k(x_n, x_m) = \varphi(x_n)^T \varphi(x_m)$, substitute $\mathbf{v}_i = \sum^n a_{in} \phi(\mathbf{x}_n)$ Bishop section 12.5 n = 1

$$\frac{1}{N}\sum_{n=1}^{N}\phi(\mathbf{x}_n)\phi(\mathbf{x}_n)^{\mathrm{T}}\sum_{m=1}^{N}a_{im}\phi(\mathbf{x}_m) = \lambda_i\sum_{n=1}^{N}a_{in}\phi(\mathbf{x}_n).$$

Multiply both sides by $\varphi(x_n)^T$

$$\frac{1}{N}\sum_{n=1}^{N}k(\mathbf{x}_l,\mathbf{x}_n)\sum_{m=1}^{N}a_{im}k(\mathbf{x}_n,\mathbf{x}_m) = \lambda_i\sum_{n=1}^{N}a_{in}k(\mathbf{x}_l,\mathbf{x}_n).$$

which reduces to

$$Ka_i = \lambda_i N a_i$$

(K is semi-positive definite; removing from both sides – affects only zero λ_i). Projections y_i = $\sum_{n=1}^{N} a_{in}k(\mathbf{x}, \mathbf{x}_n)$

Q. What happens when we use a linear kernel $k(x, x') = x^T x'$?

Kernel PCA : Demonstration

Eigenvalue=21.72

Eigenvalue=21.65

Eigenvalue=4.11

Eigenvalue=3.93

Eigenvalue=3.66

Eigenvalue=3.09

Eigenvalue=2.60

Eigenvalue=2.53

Kernel: $k(x, x') = \exp(-|x - x'|^2 / 0.1)$

[Scholkopf 98]

Manifolds in video

Dimensionality of Actions

Weizmann activity dataset: videos of 10 actions by 12 actors [Gorelick / Blank / Irani : 2005 / 07]

Reduced dimensionality

Gestures in low dimensions

Recognizing gestures

Recognizing gestures

Keck gesture dataset

Expectation Maximization
Old Faithful Geyser

Slides: Christopher M. Bishop

Expectation Maximization

- Select a prototype (model) e.g. k spherical clusters
- E-step: represent the data by assigning it to the nearest model. Compute the Expectation of the data for this assignment.
- M-step: Identify the parameters for the model so as to maximize the likelihood of the parameters
- How to minimize the number of parameters?

Assume latent state

K-means Algorithm

- Represent data set by K clusters each of which is summarized by a prote_ktype
- Initialize prototypes, then iterate between two phases:
 - E-step: assign each data point to nearest prototype
 - M-step: update prototypes to be the cluster means
- Simplest version is based on Euclidean distance
 - re-scale Old Faithful data

Responsibilities

• Responsibility matrix: assign data points to clusters

$$r_{nk} \in \{0,1\}$$

such that

$$\sum_{k} r_{nk} = 1$$

• Example: 5 data points and 3 clusters

$$(r_{nk}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

K-means Cost Function

Minimizing the Cost Function

- E-step: minimize Jw.r.t. r_{nk}
 - assigns each data point to nearest prototype
- M-step: minimize J w.r.t μ_k
 - gives

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{kn} \mathbf{x}_n}{\sum_n r_{kn}}$$

- each prototype set to the mean of points in that cluster
- Convergence guaranteed since there is a finite number of possible settings for the responsibilities

Limitations of K-means

- Hard assignments of data points to clusters – small shift of a data point can flip it to a different cluster
- Not clear how to choose the value of K
- Solution: replace 'hard' clustering of Kmeans with 'soft' probabilistic assignments
- Represents the probability distribution of the data as a *Gaussian mixture model*

Mixture of Gaussians

- Each class is a mixture of k Gaussians.
- Each gaussian has covariance, in addition to mean

The Gaussian Distribution

Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi|\boldsymbol{\Sigma}|)^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

mean covariance

• Define precision to be the inverse of the covariance $\Lambda = \Sigma^{-1}$

$$\Lambda = \Sigma^{-1}$$

• In 1-dimension $au = \frac{1}{\sigma^2}$

Likelihood Function

• Data set

$$D = {\mathbf{x}_n} \quad n = 1, \dots, N$$

Assume observed data points generated independently

$$p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

 Viewed as a function of the parameters, this is known as the *likelihood function*

Maximum Likelihood

- Set the parameters by maximizing the likelihood function
- Equivalently maximize the log likelihood

$$\ln p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{N}{2} \ln |\boldsymbol{\Sigma}| - \frac{N}{2} \ln(2\pi)$$
$$-\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

Maximum Likelihood Solution

Maximizing w.r.t. the mean gives the sample mean
1 N

$$\boldsymbol{\mu}_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

$$\Sigma_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}})^{\mathsf{T}}$$

• Maximizing w.r.t covariance gives the sample covariance

Gaussian Mixtures

- Linear super-position of Gaussians $p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- Normalization and positivity require $\sum_{k=1}^{K} \pi_k = 1$ $0 \leq \pi_k \leq 1$
- Can interpret the mixing coefficients as prior probabilities $K = \sum_{k=1}^{K} m(k) m(k) m(k) m(k)$

$$p(\mathbf{x}) = \sum_{k=1}^{n} p(k) p(\mathbf{x}|k)$$

Single Gaussians model

Single Gaussians model

The value of a good metric

Learning representations: Handwritten Digits

handwrittten numerals (MNIST)

Modified NIST digits database: 60K + 10K 28x28 images

Importance of choosing a metric

Manifold mapping with Euclidean Distance

Manifold mapping with Euclidean Distance

в

Bottom loop articulation

Dimensionality: handwritten digits

Manifold dimension