
Unsupervised Learning



Supervised vs. Unsupervised Learning

<x,y> : x = input, y = decision

xi : often high-dimensional



images: 100 x 100 pixels

Ack: A. Efros, original images from hormel corp.

Input spaces : often sparse



Learning to represent



Supervised vs. Unsupervised Learning

<x,y> : x = input, y = decision

x : often high-dimensional

f : x  y

Difficulty: 

Much of the work in identifying a good f, is 
also that of discovering structure in x. 



Representations in AI

Representation: 

expected to be compact 

Traditionally, given as part of the problem 
specs  

(e.g. determined by a knowledge engineer)

Q. Can we learn representations?



Role of Perception? 

Newborns (10-24 day old) in 
dark room work hard to position 
hand so it is visbile in a narrow 
beam of light. … 

Q. Can perception help in 
learning a representation? 

[A. van der Meer, 1997: Keeping the arm in the limelight]



Learning to represent: robot motions



Representations in AI

How to represent a “robot”? 

Must include: degrees of freedom (2)
parameters (θ1,θ2 )

+ rules / functions

A representation for an object is a “frame” or 
collection of parameters and function 
associated with the object. 



Manifold Learning



Linear dimensionality reduction

project data onto subspace of maximum variance

PCA: principal components analysis

[A] = top eigenvectors of covariance matrix [XXT]

Y = [A] X

e
1

e
1

e
2



Non-Linear Dimensionality 

Reduction: Manifolds

A manifold is a topological space which is 
locally Euclidean.

nbrhood N in Rn ↔ ball B in Rd 

(homeomorphic)

Homeomorphic: Every x in N has a map 
to a y in B

Dimensionality of manifold = d

Embedding dimension = n



Manifolds

A manifold is a topological space which is 
locally Euclidean.

nbrhood in Rn ↔ ball in Rd 

(homeomorphic)

Dimensionality of manifold = d

Embedding dimension = n

Real life data (e.g. images) : D = 105

motions = smooth variation 
of just a few parameters

DOFs = pose of faces → d = 1

Ideally, d = number of varying parameters



Non-Linear Dimensionality Reduction 

(NLDR) algorithms:  ISOMAP



Euclidean or Geodesic distance?

Geodesic = shortest path along manifold



Isomap Algorithm

• Identify neighbors.

– points within epsilon-ball  (ε-ball)

– k nearest neighbors (k-NN)

• Construct neighborhood graph.

-- x connected to y if  neighbor(x,y).

-- edge length = distance(x,y)

• Compute shortest path between nodes

– Djkastra  / Floyd-Warshall algorithm

• Construct a lower dimensional embedding.

– Multi-Dimensional Scaling (MDS)

[Tenenbaum, de Silva and Langford 2001]



Residual Variance and 

Dimensionality

residual variance = 1 – r2(D
g
, D

y
); r = linear correlation coefficient

D
g

= geodesic distance matrix; D
y

= manifold distance

Isomap

PCA (linear)

Manifold dimension

Residual

variance



Short Circuits & Neighbourhood 

selection

neighbourhood size

too big: short-circuit errors

too small: isolated patches 

[saxena, gupta mukerjee 04]
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Locally-Linear Embedding



Non-isometric maps

Fishbowl dataset : no isomorphic map to plane

- Conformal mappings: preserve angles, 

not distances

- Assume data is uniformly distributed in low dim

IsoMap Conformal IsoMap LLE



Kernel-PCA



PCA on non-linear data



PCA on non-linear data



Non-linear PCA?

transform 

φ(x)





Kernel PCA

PCA: top eigenvectors of covariance matrix [XXT]

Kernel PCA:  replace X by ϕ(x)

Eigenvalue expression  Cv
i
= λ

i
v

i

To express in terms of kernel fn  k(x
n
, x

m
) = φ(x

n
)Tφ(x

m
), 

substitute                             

Bishop section 12.5

scalar



Multiply both sides by φ(x
n
)T

which reduces to

Ka
i
= λ

i
N a

i

(K is semi-positive definite; removing from both sides – affects 

only zero λ
i
).  

Projections yi = 

Q. What happens when we use a linear kernel k(x, x') = xTx' ? 

Kernel PCA



Kernel PCA



Kernel PCA



Kernel PCA : Demonstration

[Scholkopf 98]Kernel: k(x, x') = exp (−|x − x'|2 / 0.1)



Manifolds in video



Dimensionality of Actions

side          skip            walk         wave1       wave2   

bend            jack           jump         pjump         run 

Weizmann activity dataset:
videos of 10 actions by 12 actors
[Gorelick / Blank / Irani : 2005 / 07]



Reduced dimensionality

Locality Preserving Projecction 

[He and Niyogi 2003]



Gestures in low dimensions



Recognizing gestures

HMM

1

HMM2

HMM3



Recognizing gestures

Keck gesture dataset



Expectation Maximization



Slides: Christopher 

M. Bishop

Old Faithful Geyser



Old Faithful Data Set

Duration of eruption (minutes)

Time 
between
eruptions 
(minutes)



Expectation Maximization

• Select a prototype (model) – e.g. k spherical 
clusters

• E-step: represent the data by assigning it to 
the nearest model . Compute the Expectation 
of the data for this assignment. 

• M-step: Identify the parameters for the model 
so as to maximize the likelihood  of the 
parameters

• How to minimize the number of parameters? 



Assume latent state

708 parameters78 parameters



K-means Algorithm

• Represent data set by K clusters each of 
which is summarized by a prototype

• Initialize prototypes, then iterate between two 
phases:

– E-step: assign each data point to nearest 
prototype

– M-step: update prototypes to be the cluster 
means

• Simplest version is based on Euclidean 
distance

– re-scale Old Faithful data





















Responsibilities

• Responsibility matrix: assign data points to clusters

such that 

• Example: 5 data points and 3 clusters



K-means Cost Function

prototypesresponsibilities

data



Minimizing the Cost Function

• E-step: minimize    w.r.t.

– assigns each data point to nearest prototype

• M-step: minimize    w.r.t

– gives

– each prototype set to the mean of points in that 
cluster

• Convergence guaranteed since there is a finite 
number of possible settings for the responsibilities





Limitations of K-means

• Hard assignments of data points to 

clusters – small shift of a data point can 

flip it to a different cluster

• Not clear how to choose the value of K

• Solution: replace „hard‟ clustering of K-

means with „soft‟ probabilistic assignments

• Represents the probability distribution of 

the data as a Gaussian mixture model



Mixture of Gaussians

• Each class is a mixture of k Gaussians. 

• Each gaussian has covariance, in 

addition to mean



The Gaussian Distribution

• Multivariate Gaussian

• Define precision to be the inverse of the 
covariance

• In 1-dimension 

mean covariance



Likelihood Function

• Data set

• Assume observed data points generated 
independently

• Viewed as a function of the parameters, this is 
known as the likelihood function



Maximum Likelihood

• Set the parameters by maximizing the 

likelihood function

• Equivalently maximize the log likelihood



Maximum Likelihood Solution

• Maximizing w.r.t. the mean gives the 

sample mean

• Maximizing w.r.t covariance gives the 

sample covariance



Gaussian Mixtures

• Linear super-position of Gaussians

• Normalization and positivity require

• Can interpret the mixing coefficients as prior 
probabilities



Single Gaussians model



Single Gaussians model



The value of a good metric

Learning representations: 

Handwritten Digits



handwrittten numerals (MNIST)

Modified NIST digits database: 60K + 10K 28x28 images



Importance of choosing a metric



Manifold mapping with 

Euclidean Distance 



“tangent distance”



Manifold mapping with 

Euclidean Distance 





Dimensionality: handwritten digits

Manifold dimension

Residual

variance


