Unsupervised Learning



Supervised vs. Unsupervised Learning

<X,y>: X =input, y = decision

X; : often high-dimensional



Input spaces : often sparse

Bracburn

Golden Delicious Red Ddlicious Granny Smith Honeycrisp Jonathan

Y

Jonagold Mcintosh Pacific Rose Paula Red Wealthy

Images: 100 x 100 pixels

Ack: A. Efros, original images from hormel corp.



Learning to represent




Supervised vs. Unsupervised Learning

<X,y>: X = input, y = decision

X : often high-dimensional

f:x 2y
Difficulty:

Much of the work in identifying a good f, is
also that of discovering structure in x.




Representations in Al

Representation:
expected to be compact

Traditionally, given as part of the problem
specs

(e.g. determined by a knowledge engineer)

Q. Can we learn representations?




Role of Perception?

Newborns (10-24 day old) in
dark room work hard to position
hand so it is visbile in a narrow
beam of light. ...

Q. Can perception help in
learning a representation?




Learning to represent: robot motions




Representations in Al

How to represent a “robot”?

Must include: degrees of freedom (2)
parameters (6,0, )
+ rules / functions

A representation for an object is a “frame” or
collection of parameters and function
associated with the object.




Manifold Learning




Linear dimensionality reduction

oroject data onto subspace of maximum variance

PCA: principal components analysis

'A] = top eigenvectors of covariance matrix [XX']
Y =[A] X




Non-Linear Dimensionality
Reduction: Manifolds

A manifold is a topological space which is
locally Euclidean.

nbrhood N in R" < ball B in R¢
(homeomorphic)

Homeomorphic: Every x in N has a map
toayinB

Dimensionality of manifold = d
Embedding dimension = n




Manifolds

A manifold is a topological space which is
locally Euclidean.

nbrhood in R" « ball in R¢
(homeomorphic)

Dimensionality of manifold = d
Embedding dimension = n

Real life data (e.g. images) : D = 10°
motions = smooth variation
of just a few parameters

DOFs = pose of faces — d = 1

ldeally, d = number of varying parameters




Non-Linear Dimensionality Reduction
(NLDR) algorithms: ISOMAP



Euclidean or Geodesic distance?
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Geodesic = shortest path along manifold



Isomap Algorithm

|dentify neighbors.
— points within epsilon-ball (&-ball)
— k nearest neighbors (k-NN)

Construct neighborhood graph.
-- X connected to y if neighbor(x,y).
-- edge length = distance(x,y)

Compute shortest path between nodes
— Djkastra / Floyd-Warshall algorithm

Construct a lower dimensional embedding.
— Multi-Dimensional Scaling (MDS)
[Tenenbaum, de Silva and Langford 2001]



Residual Variance and
Dimensionality
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residual variance = 1 — r2(Dg, Dy); r = linear correlation coefficient
D, = geodesic distance matrix; D, = manifold distance



Short Circuits & Neighbourhood
selection

neighbourhood size

too big: short-circuit errors
too small: isolated patches

0r

[saxena, gupta mukerjee 04]



Locally-Linear Embedding

Reconstruct with
linear weights

Map to embedded coordinates

NE




Non-isometric maps

Fishbowl dataset : no isomorphic map to plane

- Conformal mappings: preserve angles,
not distances

- Assume data is uniformly distributed in low dim




Kernel-PCA



PCA on non-linear data
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PCA on non-linear data
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Non-linear PCA?
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Kernel PCA

PCA: top eigenvectors of covariance matrix [XX']

Kernel PCA: replace X by gb(x)

'\,* E {J J{H}QJ{E”

n=1

. : scalar
Eigenvalue expressmn Cv. =4V,

,\, Z{J 3{?1 {’U }{?1} Vﬁ} — }lﬂ’

n=1

To express in terms of kernel fn k(x_, X ) = o(x, ) o(x_),

substitute N
Vi = E Oin "i"[xﬂ}
n=1 Bishop section 12.5



Kernel PCA

. N N N
1

? Qﬁ(:’;n)q}[xn }T Z ﬂ-imff}[x?n) — }'Li: Z ﬁi‘n‘f_f}[xn ]

n=1 m=1 n—1

I\/Iultlply both sides by go(x )

_ E A X[ x” E (Il”l] (X” x,n — )\ E (lln XI xn)

=3 m=1 n=1

which reduces to

Ka, =4, N a,
(K i1s semi-positive definite; removing from both sides — affects
only zero /,).

Projections y; = Z Aink(X, Xn)

n=1

Q. What happens when we use a linear kernel k(x, x") = x'x" ?



Kernel PCA
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Kernel PCA

0.4 Projection by KPCA
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Kernel PCA : Demonstration

Eigenvalue=21.72 Eigenvalue=21.65 Eigenvalue=4.11 Eigenvalue=3.93

Eigenvalue=3.66 Eigenvalue=3.09 Eigenvalue=2.60 Eigenvalue=2.53

Kernel: k(x, xX') = exp (-=|x = x'|?/ 0.1) [Scholkopf 98]



Manifolds in video



Dimensionality of Actions

bend jack jump pjump run

side skip walk wavel wave2

Weizmann activity dataset:

videos of 10 actions by 12 actors
[Gorelick / Blank / Irani : 2005 / 07]



Reduced dimensionality

2 | *  jack
+  jump
0. *  pjump
run
+  side
=2 skip
+  walk
-4 *+  wavel
10 *+  wave2

0
Locality Preserving Projecction

[He and Niyogi 2003]



IMensions

Gestures in low d
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Recognizing gestures

HMM
/1

s —— HMMZ2

HMM3



Recognizing gestures

Keck gesture dataset



Expectation Maximization



Old Faithful Geyser




Old Faithful Data Set
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Expectation Maximization

» Select a prototype (model) — e.g. k spherical
clusters

» E-step: represent the data by assigning it to
the nearest model . Compute the Expectation
of the data for this assignment.

- M-step: Identify the parameters for the model
so as to maximize the likelihood of the
parameters

* How to minimize the number of parameters?



Assume latent state




K-means Algorithm

» Represent data set by K clusters each of
which Is summarized by a profgtype

* |nitialize prototypes, then iterate between two
phases:

— E-step: assign each data point to nearest
prototype

— M-step: update prototypes to be the cluster
means

« Simplest version Is based on Euclidean
distance

— re-scale Old Faithful data






























Responsibilities

« Responsibility matrix: assign data points to clusters
Tnk € {Oa 1}

Zrnk =1
k
« Example: 5 data points and 3 clusters

( 0
1
O

1

0

such that

(Thk) =

= O OO+
oOoOor OO




K-means Cost Function

data
. L

N
J=33 rolxn — pgll?
n=1

k=1
j \ prototypes

responsibilities




Minimizing the Cost Function

o E-step: minimize Jw.r.t. v,
— assigns each data point to nearest prototype
« M-step: minimize J w.r.t p
— gives
wy, = Zn T'knXn
Zn Tkn

— each prototype set to the mean of points in that
cluster

« Convergence guaranteed since there is a finite
number of possible settings for the responsibilities



10007

500¢f




Limitations of K-means

Hard assignments of data points to
clusters — small shift of a data point can
flip 1t to a different cluster

Not clear how to choose the value of K

Solution: replace ‘hard’ clustering of K-
means with ‘soft’ probabilistic assignments

Represents the probabillity distribution of
the data as a Gaussian mixture model



Mixture of Gaussians

« Each class is a mixture of k Gaussians.

« Each gaussian has covariance, In
addition to mean



The Gaussian Distribution

 Multivariate Gaussian
1

_ 1 Te-1,0
N(}f’l’g{(zwml”exp{ S (X p) T x ”)}
mean covariance

- Define precision to be the inverse of the
covariance R

 |In 1-dimension 1



Likelihood Function

« Data set
DZ{Xn} ’I’L=1,...,N

« Assume observed data points generated
Independently

N
n=1
* Viewed as a function of the parameters, this is
known as the likelihood function



Maximum Likelihood

« Set the parameters by maximizing the
likelihood function

« Equivalently maximize the log likelihood

N N
Inp(D|p,2) = —Eln|2|—aln(27r)

1 N
5 Z (xXn — N)Tz_l(xn — 1)
n=1



Maximum Likelihood Solution

« Maximizing w.r.t. the mean gives the
sample meanr N
1
ML = > Xn

n=1
N

S (xn = L) &En — ) '

1
XML = N
n=1

« Maximizing w.r.t covariance gives the
sample covariance



Gaussian Mixtures

 Linear super-position of Gaussians
K

p(x) = > mpN(x|pg, k)
k=1

« Normalization and positivity require

K
Y mp=1 0<m<1
k=1

- Can Interpret the mixing coefficients as prior
probabllities K

p(x) = Y p(k)p(x|k)

k=1



Single Gaussians model
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Single Gaussians model
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The value of a good metric

Learning representations:
Handwritten Digits



handwrittten numerals (MNIST)




Importance of choosing a metric

?2 99




Manifold mapping with
Euclidean Distance
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“tanaent distance”

Pixel space
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Bottom loop articulation
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Dimensionality: handwritten digits

0.8

0.6}

Residual

variance
0.4}

0.2}

1 2 3456 7 8 9 10

Manifold dimension



