# Discovering Models / Theories

cs365 2015 mukerjee

### **Domain Theories**

#### • Agent :

given precept history  $p \in P$ , select decision from set of choices  $a \in A$ so as to meet a goal g (performance) – maximize utility function U()

 Requires knowledge of how actions under different precepts affect the goal

→ Model or **Theory** 

• Task domains: a) 8-puzzle, [detrmnstc] b) Soccer [stochastic]

### 8-puzzle

• Precept = state

5

8

- Actions = move
- Goal : T/F
- Utility : num moves

| 6 | 5 |   |   |
|---|---|---|---|
| 1 |   |   |   |
|   |   | 1 | 2 |
|   | 3 | 4 | 5 |
|   | 6 | 7 | 8 |

### 8-puzzle

- State = [7,2,4,5,B,6,8,3,1]
- Actions = L,R, U,D
   State + Action
   → new State
- Decision: based on Search
  - [Informed / Uninformed]



### Breadth-first search

- Expand shallowest unexpanded node
- Fringe: FIFO queue new successors go at end



### Properties of breadth-first search

- <u>Complete?</u> Yes (if *b* is finite)
- <u>Time?</u>  $1+b+b^2+b^3+...+b^d+b(b^d-1) = O(b^{d+1})$
- <u>Space?</u>  $O(b^{d+1})$  (keeps every node in memory)
- **Optimal?** Yes (if cost = 1 per step)

### Iterative-Deepening search



### Cost-based search

- edges don't have equal cost
- Breadth-first = first search lower costs from START
- Fringe: FIFO

 $O(b^{1+C/\varepsilon})$ 



### Soccer

- Precept = goalie, self, ball
   + wind, opponents, teammates...
- Actions = kick (angle, speed, swing)
- Utility : goal probability



#### **Discrete-Deterministic Spaces:**

Search

## Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definitio
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

### Breadth-first search

- Expand shallowest unexpanded node
- Fringe: FIFO queue new successors go at end



CS 3243 - Blind Search

### Properties of breadth-first search

- <u>Complete?</u> Yes (if *b* is finite)
- <u>Time?</u>  $1+b+b^2+b^3+...+b^d+b(b^d-1) = O(b^{d+1})$
- <u>Space?</u>  $O(b^{d+1})$  (keeps every node in memory)
- **Optimal?** Yes (if cost = 1 per step)



### 8-puzzle heuristics

Admissible:

- h1 : Number of misplaced tiles
   = 6
- h2: Sum of Manhattan distances of the tiles from their goal positions

= 0+0+1+1+2+3+1+3=11



goal:



### 8-puzzle heuristics

```
Nilsson's Sequence
Score(n) = P(n) + 3 S(n)
```

P(n) : Sum of Manhattan distances of each tile from its proper position

S(n), sequence score : check around the non-central squares:

+2 for every tile not followed by successor 0 for every other tile. piece in center = +1

#### **Stochastic Spaces**

#### Soccer





#### Soccer : Shooting at goal



[acharya mukerjee 01]

#### Soccer : Shoot, Pass, dribble, or ... ?



### Handwritten digits - MNIST













#### Confusion matrix



### **Discovering theories**

### Continuous Data



### Discrete Attribute data

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait at a restaurant:

| Example  | Attributes |     |     |     |      |        |      |     |         | Target |      |
|----------|------------|-----|-----|-----|------|--------|------|-----|---------|--------|------|
| 1        | Alt        | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est    | Wait |
| $X_1$    | Т          | F   | F   | Т   | Some | \$\$\$ | F    | Т   | French  | 0–10   | Т    |
| $X_2$    | Т          | F   | F   | Т   | Full | \$     | F    | F   | Thai    | 30–60  | F    |
| $X_3$    | F          | Т   | F   | F   | Some | \$     | F    | F   | Burger  | 0–10   | Т    |
| $X_4$    | Т          | F   | Т   | Т   | Full | \$     | F    | F   | Thai    | 10–30  | Т    |
| $X_5$    | Т          | F   | Т   | F   | Full | \$\$\$ | F    | Т   | French  | >60    | F    |
| $X_6$    | F          | Т   | F   | Т   | Some | \$\$   | Т    | Т   | Italian | 0–10   | Т    |
| $X_7$    | F          | Т   | F   | F   | None | \$     | Т    | F   | Burger  | 0–10   | F    |
| $X_8$    | F          | F   | F   | Т   | Some | \$\$   | Т    | Т   | Thai    | 0–10   | Т    |
| $X_9$    | F          | Т   | Т   | F   | Full | \$     | Т    | F   | Burger  | >60    | F    |
| $X_{10}$ | Т          | Т   | Т   | Т   | Full | \$\$\$ | F    | Т   | Italian | 10–30  | F    |
| $X_{11}$ | F          | F   | F   | F   | None | \$     | F    | F   | Thai    | 0-10   | F    |
| $X_{12}$ | Т          | Т   | Т   | Т   | Full | \$     | F    | F   | Burger  | 30–60  | Т    |

• Classification of examples is positive (T) or negative (F)

### **Discrete Features**

• Parse the sentence: "Time flies like an arrow"

(ROOT (S)(NN time)) (NP)(VP (VBZ flies) (PP (IN like) (NP (DT an) (NNP arrow) (. .) (NNP \*CR\*)))))) ROOT  $\mathbf{S}$ VP NP VBZ PP NN time flies IN NP May have many parses. like NNP NNP ΠТ How to rank the choices? \*CR\* an arrow



### **Modelling as Regression**

Given a set of decisions  $y_i$  based on observations  $x_i$ ,

- derived from unknown function **y** = **f**(**x**)
- with noise

Try to find a model or theory:

$$y=h(x) \approx f(x)$$

where h() is drawn from the hypothesis space – e.g. the space of radial basis functions, or polynomials, etc.

### **Polynomial Curve Fitting**



[Bishop 06] ch.1

#### **Linear Regression**

$$y = f(x) = \Sigma_i W_i \cdot \Phi_i(x)$$

**Φ<sub>i</sub>(x)** : basis function W<sub>i</sub> : weights

Linear : function is linear in the weights Quadratic error function --> derivative is linear in **w** 

### Sum-of-Squares Error Function



$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

### 0<sup>th</sup> Order Polynomial



### 1<sup>st</sup> Order Polynomial



### 3<sup>rd</sup> Order Polynomial



### 9<sup>th</sup> Order Polynomial



### **Over-fitting**



Root-Mean-Square (RMS) Error:  $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$
## **Polynomial Coefficients**

|               | M=0  | M = 1 | M=3    | M=9         |
|---------------|------|-------|--------|-------------|
| $w_0^\star$   | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1^\star$   |      | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$ |      |       | -25.43 | -5321.83    |
| $w_3^\star$   |      |       | 17.37  | 48568.31    |
| $w_4^{\star}$ |      |       |        | -231639.30  |
| $w_5^{\star}$ |      |       |        | 640042.26   |
| $w_6^\star$   |      |       |        | -1061800.52 |
| $w_7^{\star}$ |      |       |        | 1042400.18  |
| $w_8^\star$   |      |       |        | -557682.99  |
| $w_9^{\star}$ |      |       |        | 125201.43   |

# 9<sup>th</sup> Order Polynomial



#### Data Set Size: N = 15

9<sup>th</sup> Order Polynomial



## Data Set Size: N = 100

9<sup>th</sup> Order Polynomial



# Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

#### **Regularization:** $\ln \lambda = -18$



## **Regularization:** $\ln \lambda = 0$



#### **Regularization:** $E_{\rm RMS}$ **vs.** $\ln \lambda$



## **Polynomial Coefficients**

|               | $\ln\lambda=-\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|---------------|----------------------|---------------------|-------------------|
| $w_0^\star$   | 0.35                 | 0.35                | 0.13              |
| $w_1^\star$   | 232.37               | 4.74                | -0.05             |
| $w_2^{\star}$ | -5321.83             | -0.77               | -0.06             |
| $w_3^\star$   | 48568.31             | -31.97              | -0.05             |
| $w_4^\star$   | -231639.30           | -3.89               | -0.03             |
| $w_5^{\star}$ | 640042.26            | 55.28               | -0.02             |
| $w_6^\star$   | -1061800.52          | 41.32               | -0.01             |
| $w_7^{\star}$ | 1042400.18           | -45.95              | -0.00             |
| $w_8^\star$   | -557682.99           | -91.53              | 0.00              |
| $w_9^\star$   | 125201.43            | 72.68               | 0.01              |

## **Probability Theory**

#### Learning = discovering regularities

- **Regularity** : repeated experiments: outcome not be fully predictable

outcome = "possible world" set of all possible worlds =  $\Omega$ 

# **Probability Theory**

**Apples and Oranges** 



# Sample Space

#### Sample $\omega$ = Pick two fruits, e.g. Apple, then Orange Sample Space $\Omega$ = {(A,A), (A,O), (O,A),(O,O)} = all possible worlds

Event e = set of possible worlds, e  $\subseteq \Omega$ • e.g. second one picked is an apple

#### Learning = discovering regularities

- **Regularity** : repeated experiments: outcome not be fully predictable
- **Probability** p(e) : "the fraction of possible worlds in which e is true" i.e. outcome is event e
- Frequentist view :  $p(e) = limit as N \rightarrow \infty$
- Belief view: in wager : equivalent odds
  (1-p):p that outcome is in e, or vice versa

## Axioms of Probability

- non-negative :  $p(e) \ge 0$
- unit sum p(Ω) = 1
  i.e. no outcomes outside sar

True



 - additive : if e1, e2 are disjoint events (no common outcome):

$$p(e1) + p(e2) = p(e1 U e2)$$

ALT:

$$p(e1 \vee e2) = p(e1) + p(e2) - p(e1 \wedge e2)$$

# Why probability theory?

different methodologies attempted for uncertainty:

- Fuzzy logic
- Multi-valued logic
- Non-monotonic reasoning

#### But **unique property** of probability theory:

- If you gamble using probabilities you have the best chance in a wager. [de Finetti 1931]
- => if opponent uses some other system, he's more likely to lose

# Ramsay-diFinetti theorem (1931)

- If agent X's degrees of belief are rational, then X 's degrees of belief function defined by fair betting rates is (formally) a probability function
- Fair betting rates: opponent decides which side one bets on
- Proof: fair odds result in a function pr () that satisifies the Kolmogrov axioms:
  - Normality :  $pr(S) \ge 0$
  - Certainty : pr(T)=1
  - Additivity : pr (S1 v S2 v.. )=  $\Sigma$ (Si)

# Joint vs. conditional probability



**Marginal Probability** 

$$p(X = x_i) = \frac{c_i}{N}$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

**Conditional Probability** 

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

# **Probability Theory**



Sum Rule  $p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$   $= \sum_{j=1}^{L} p(X = x_i, Y = y_j)$ 

**Product Rule** 

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

# **Rules of Probability**



## Example

- A disease *d* occurs in 0.05% of population. A test is 99% effective in detecting the disease, but 5% of the cases test positive in absence of *d*.
- 10000 people are tested. How many are expected to test positive?

p(d) = 0.0005 ; p(t/d) = 0.99 ; p(t/~d) = 0.05 p(t) = p(t,d) + p(t,~d)[Sum Rule] = p(t/d)p(d) + p(t/~d)p(~d)[Product Rule]

= 0.99\*0.0005 + 0.05 \* 0.9995 = 0.0505 → **505** +ve

## Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior  $\infty$  likelihood × prior

# Bayes' Theorem

Thomas Bayes (c.1750):

how can we infer causes from effects?

How can one learn the probability of a future event if one knew only

how many times it had (or had not) occurred in the past?

as new evidence comes in --> prob knowledge improves. e.g. throw a die. guess is poor (1/6) throw die again. is it > or < than prev? Can improve guess. throw die repeatedly. can improve prob of guess quite a lot.

Hence: initial estimate (*prior* belief *P(h)*, not well formulated) + new evidence (support) – compute likelihood *P(data|h)* → improved estimate (*posterior P(h|data)*)

## Example

A disease *d* occurs in 0.05% of population. A test is 99% effective in detecting the disease, but 5% of the cases test positive in absence of *d*.

If you are tested +ve, what is the probability you have the disease?

 $p(d/t) = p(d) \cdot p(t/d) / p(t) ; p(t) = 0.0505$ 

p(d/t) = 0.0005 \* 0.99 / 0.0505 = 0.0098 (about 1%)

if 10K people take the test, E(d) = 5
 FPs = 0.05 \* 9995 = 500
 TPs = 0.99 \* 5 = 5. → only 5/505 have d

#### **Bayesian Inference**

Testing for hypothesis H given evidence E

- **Evidence** : based on new observation E
- **Prior** : Earlier evaluation about the probability of H
- Likelihood : probability of evidence given hypothesis
  P(E|H)

Bayesian inference:

normalization( (marginal lklihood)

```
P(H|E) = P(E|H) P(H) / P(E)
```

Posterior probability

# **Bayesian Inference**



The fruit picked is an orange (o). What is the probability that it's from the blue box (B)?

P(B|o) = P(o|B)p(B) / P(o)

Given: red box is picked  $40\% \rightarrow p(B) = 0.6$ 

 $P(o) = (\frac{3}{4}*.6 + \frac{1}{3}*0.4) = \frac{11}{20}$ 

 $P(B|o) = \frac{3}{4} * .6 * 20/11 = 9/11$ 

Continuous variables: Probability Densities

# **Probability Densities**



#### **Expectations**

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \,\mathrm{d}x$$

discrete x

continuous X

Frequentist approximation w unbiased sample

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

(both discrete / continuous)

#### The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$



#### **Gaussian Mean and Variance**

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu,\sigma^2) x^2 \,\mathrm{d}x = \mu^2 + \sigma^2$$

 $\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$ 

# **Central Limit Theorem**

Distribution of sum of N i.i.d. random variables becomes increasingly Gaussian for larger N.

Example: N uniform [0,1] random variables.



# **Gaussian Parameter Estimation**

Observations p(x)assumed to be indpendently drawn from same distribution (i.i.d)

Likelihood function

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}\left(x_n|\mu,\sigma^2\right)$$

# Maximum (Log) Likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2} - \frac{N}{2}\ln\sigma^{2} - \frac{N}{2}\ln(2\pi)$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \qquad \sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

Distributions over Multi-dimensional spaces

## The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$




#### Multivariate distribution



joint distribution P(x,y) varies considerably though marginals P(x), P(y) are identical

estimating the joint distribution requires much larger sample:  $O(n^k)$  vs nk

### Marginals and Conditionals



marginals P(x), P(y) are gaussian conditional P(x|y) is also gaussian

## Non-intuitive in high dimensions

As dimensionality increases, bulk of data moves away from center



Gaussian in polar coordinates;  $p(r)\delta r$  : prob. mass inside annulus  $\delta r$  at r.

## Change of variable x=g(y)



$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) |g'(y)|$$

## Bernoulli Process

Successive Trials – e.g. Toss a coin three times: HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Probability of k Heads:

| k           | 0   | 1   | 2   | 3   |
|-------------|-----|-----|-----|-----|
| <i>P(k)</i> | 1/8 | 3/8 | 3/8 | 1/8 |

Probability of success: p, failure q, then

$$P(k) = \binom{n}{k} p^k q^{n-k}$$

#### **Model Selection**

## Model Selection

#### **Cross-Validation**



#### **Quantized-Cell Classification**



## **Curse of Dimensionality**



general cubic **polynomial** for D dimensions :  $O(D^3)$  parameters

$$w_0 + \sum_{i=1}^D w_i x_i + \sum_{i=1}^D \sum_{j=1}^D w_{ij} x_i x_j + \sum_{i=1}^D \sum_{j=1}^D \sum_{k=1}^D w_{ijk} x_i x_j x_k$$

## **Curse of Dimensionality**

The unit hyper cube and unit sphere in high dimensions



At higher dim, vol(sphere) / vol(hypercube)  $\rightarrow$  0

## **Curse of Dimensionality**

Polynomial curve fitting, M = 3

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

Gaussian Densities in higher dimensions



**Regression with Polynomials** 

## **Curve Fitting Re-visited**



#### **Bayesian Inference**

Testing for hypothesis H given evidence E



posterior

### Maximum Likelihood

Evidence = *t*; Hypothesis = *poly*(*x*, *w*)

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right)$$
$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{y(x_n, \mathbf{w}) - t_n\right\}^2}_{\beta E(\mathbf{w})} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

## Maximum Likelihood

Evidence = *t*, Hypothesis = *poly*(*x*, *w*)

•

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right)$$
$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{y(x_n, \mathbf{w}) - t_n\right\}^2}_{\beta E(\mathbf{w})} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

Determine  $\mathbf{w}_{\mathrm{ML}}$  by minimizing sum-of-squares error,  $E(\mathbf{w})$ 

$$\frac{1}{\beta_{\rm ML}} = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}_{\rm ML}) - t_n\}^2$$

#### **Predictive Distribution**

 $p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$ 



#### MAP: A Step towards Bayes

•

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\alpha)$$

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine  $\mathbf{w}_{\mathrm{MAP}}$  by minimizing regularized sum-of-squares error,  $\widetilde{E}(\mathbf{w})$ 

MAP = Maximum Posterior

## **Bayesian Curve Fitting**

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) \, \mathrm{d}\mathbf{w} = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

$$m(x) = \beta \phi(x)^{\mathrm{T}} \mathbf{S} \sum_{n=1}^{N} \phi(x_n) t_n \qquad s^2(x) = \beta^{-1} + \phi(x)^{\mathrm{T}} \mathbf{S} \phi(x)$$
$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^{\mathrm{T}} \qquad \phi(x_n) = \left(x_n^0, \dots, x_n^M\right)^{\mathrm{T}}$$

#### **Bayesian Predictive Distribution**

 $p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$ 



#### **Information Theory**

## **Twenty Questions**

Knower: thinks of object (point in a probability space) Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe? Knower: No.

Guesser: Is it Valmiki? Knower: No.

Guesser: Is it Aunt Lakshmi?

. . .

## **Expectations & Surprisal**

Turn the key: expectation: lock will open

Exam paper showing: could be 100, could be zero. *random variable*: function from set of marks to real interval [0,1]

Interestingness  $\propto$  unpredictability

surprisal (r.v. = x) =  $-\log_2 p(x)$ = 0 when p(x) = 1 = 1 when p(x) =  $\frac{1}{2}$ =  $\infty$  when p(x) = 0

#### Expectations in data

B: 01110100110100100110. . . 10101110101110100101100010

Structure in data  $\rightarrow$  easy to remember

# Entropy

$$\mathbf{H}[x] = -\sum_{x} p(x) \log_2 p(x)$$

#### Used in

- coding theory
- statistical physics
- machine learning

# Entropy



## Entropy

In how many ways can N identical objects be allocated M bins?

$$W = \frac{N!}{\prod_i n_i!}$$

$$H = \frac{1}{N} \ln W \simeq -\lim_{N \to \infty} \sum_{i} \left(\frac{n_i}{N}\right) \ln \left(\frac{n_i}{N}\right) = -\sum_{i} p_i \ln p_i$$
  
Entropy maximized when  $\forall i : p_i = \frac{1}{M}$ 

# Entropy in Coding theory

x discrete with 8 possible states; how many bits to transmit the state of x?

All states equally likely

$$H[x] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3$$
 bits.

## Coding theory



$$\begin{aligned} \mathbf{H}[x] &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64} \\ &= 2 \text{ bits} \end{aligned}$$

average code length =  $\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + 4 \times \frac{1}{64} \times 6$ = 2 bits

## **Entropy in Twenty Questions**

Intuitively : try to ask q whose answer is 50-50

Is the first letter between A and M?

question entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable: entropy =  $-\frac{1}{2} * \log_2(\frac{1}{2}) - \frac{1}{2} * \log_2(\frac{1}{2}) = 1.0$ For P(Y)=1/1028 entropy =  $-\frac{1}{1028} * -10 - eps = 0.01$