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Domain Theories

 Agent : 

given precept history p ∈ P,
select decision from set of choices a ∈ A 

so as to meet a goal g (performance) –

maximize utility function U()

 Requires knowledge of how actions under different precepts 
affect the goal 

 Model or Theory

 Task domains:  a) 8-puzzle, [detrmnstc] b) Soccer [stochastic]



8-puzzle

• Precept = state

• Actions = move

• Goal : T/F

• Utility : num moves 



8-puzzle

• State = [7,2,4,5,B,6,8,3,1]

• Actions = L,R, U,D
State + Action 

 new State

• Decision: based on Search 
• [Informed / Uninformed]



Breadth-first search

• Expand shallowest unexpanded node

• Fringe: FIFO queue new successors go at end

O(b1+d)
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Properties of breadth-first search

• Complete? Yes (if b is finite)

• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

• Space? O(bd+1) (keeps every node in memory)

• Optimal? Yes (if cost = 1 per step)



Iterative-Deepening search
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Cost-based search

• edges don’t have 
equal cost

• Breadth-first = first 
search lower costs 
from START

• Fringe: FIFO  

O(b1+C/ ε)

8



Soccer

θ

• Precept = goalie, self, ball

+  wind, opponents, 
teammates…

• Actions = kick (angle, 
speed, swing)

• Utility : goal probability



Discrete-Deterministic Spaces: 

Search



Uninformed search strategies

• Uninformed search strategies use only the 
information available in the problem definitio

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search



Breadth-first search

• Expand shallowest unexpanded node

• Fringe: FIFO queue new successors go at end
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Properties of breadth-first search

• Complete? Yes (if b is finite)

• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

• Space? O(bd+1) (keeps every node in memory)

• Optimal? Yes (if cost = 1 per step)



Representing
the state 
space

1. States: 

2. Actions : 

3. Goal test: 

4. Cost: 



8-puzzle heuristics

Admissible:

• h1 : Number of misplaced tiles

= 6

• h2: Sum of Manhattan 
distances of the tiles 
from their goal positions 

= 0+0+1+1+2+3+1+3=11

goal:



8-puzzle heuristics

Nilsson’s Sequence 
Score(n) = P(n) + 3 S(n)

P(n) : Sum of Manhattan distances of each tile from 
its proper position

S(n), sequence score : check around the non-central 
squares:

+2 for every tile not followed by successor 
0 for every other tile.  
piece in center = +1



Stochastic Spaces 



Soccer

θ



Soccer : Shooting at goal

[acharya mukerjee 01]



Soccer : Shoot, Pass, dribble, or … ?



Handwritten digits - MNIST



Confusion matrix



Discovering theories



Continuous Data



Discrete Attribute data

• Examples described by attribute values (Boolean, discrete, continuous)

• E.g., situations where I will/won't wait at a restaurant:

• Classification of examples is positive (T) or negative (F)



• Parse the sentence: “Time flies like an arrow”

Discrete Features

May have many parses.
How to rank the choices?



Regression



Modelling as Regression

Given a set of decisions yi based on observations xi, 

- derived from unknown function y = f(x) 

- with noise

Try to find a model or theory: 

y = h(x)  ≈  f(x)

where h() is drawn from the hypothesis space – e.g. the space of 
radial basis functions, or polynomials, etc. 



Polynomial Curve Fitting

[Bishop  06]  ch.1 



Linear Regression

y = f(x) = Σi wi . φi(x)

φi(x) :  basis function

wi      : weights

Linear : function is linear in the weights

Quadratic error function --> derivative is linear in w



Sum-of-Squares Error Function



0th Order Polynomial



1st Order Polynomial



3rd Order Polynomial



9th Order Polynomial



Over-fitting

Root-Mean-Square (RMS) Error:



Polynomial Coefficients   



9th Order Polynomial



Data Set Size: 

9th Order Polynomial



Data Set Size: 

9th Order Polynomial



Regularization

Penalize large coefficient values



Regularization: 



Regularization: 



Regularization:          vs. 



Polynomial Coefficients   



Probability Theory



Learning = discovering regularities

- Regularity : repeated experiments: 
outcome not be fully predictable

outcome = “possible world”
set of all possible worlds = Ω



Probability Theory

Apples and Oranges



Sample Space

Sample ω = Pick two fruits, 

e.g. Apple, then Orange

Sample Space Ω = {(A,A), (A,O),

(O,A),(O,O)}  

= all possible worlds

Event e = set of possible worlds, e ⊆ Ω

• e.g. second one picked is an apple



Learning = discovering regularities

- Regularity : repeated experiments: 
outcome not be fully predictable

- Probability p(e) : "the fraction of possible worlds in 
which e is true” i.e. outcome is event e 

- Frequentist view :  p(e)  = limit as N → ∞
- Belief view: in wager : equivalent odds 

(1-p):p that outcome is in e, or vice versa



Axioms of Probability

- non-negative : p(e) ≥ 0

- unit sum p(Ω) = 1
i.e. no outcomes outside sample space 

- additive :  if e1, e2 are disjoint events (no common 
outcome):

p(e1) + p(e2)  = p(e1 ∪ e2)

ALT: 

p(e1  ∨ e2) = p(e1) + p(e2) - p(e1 ∧ e2)



Why probability theory?

different methodologies attempted for uncertainty: 

– Fuzzy logic

– Multi-valued logic

– Non-monotonic reasoning

But unique property of probability theory: 

If you gamble using probabilities you have the best 

chance in a wager. [de Finetti 1931]  

=> if opponent uses some other system, he's 

more likely to lose



Ramsay-diFinetti theorem (1931)

If agent X’s degrees of belief are rational, then X ’s 

degrees of belief function defined by fair betting 

rates is (formally) a probability function

Fair betting rates: opponent decides which side one 

bets on

Proof: fair odds result in a function pr () that satisifies 

the Kolmogrov axioms:  

Normality :   pr(S) >=0

Certainty   :  pr(T)=1   

Additivity   : pr (S1 v S2 v.. )= Σ(Si)



Joint vs. conditional probability

Marginal Probability

Conditional ProbabilityJoint Probability



Probability Theory

Sum Rule

Product Rule



Rules of Probability

Sum Rule

Product Rule



Example

A disease d occurs in 0.05% of population.   A test is 

99% effective in detecting the disease, but 5% of 

the cases test positive in absence of d. 

10000 people are tested.  How many are expected to 

test positive? 

p(d) = 0.0005 ;   p(t/d) = 0.99 ;   p(t/~d) = 0.05

p(t) = p(t,d) + p(t,~d)                       [Sum Rule]

= p(t/d)p(d) + p(t/~d)p(~d)        [Product Rule]

= 0.99*0.0005 + 0.05 * 0.9995 = 0.0505    505 +ve



Bayes’ Theorem

posterior  likelihood × prior



Bayes’ Theorem

Thomas Bayes (c.1750): 

how can we infer causes from effects? 

How can one learn the probability of a future event if one knew 

only

how many times it had (or had not) occurred in the past? 

as new evidence comes in --> prob knowledge improves.  

e.g. throw a die. guess is poor (1/6)

throw die again. is it > or < than prev? Can improve guess. 

throw die repeatedly.  can improve prob of guess quite a lot. 

Hence: initial estimate (prior belief P(h), not well formulated)

+ new evidence (support) – compute likelihood P(data|h)

 improved estimate (posterior P(h|data) )



Example

A disease d occurs in 0.05% of population.   A test is 

99% effective in detecting the disease, but 5% of 

the cases test positive in absence of d. 

If you are tested +ve, what is the probability you have 

the disease? 

p(d/t) = p(d) . p(t/d) / p(t)  ; p(t) = 0.0505

p(d/t) = 0.0005 * 0.99 / 0.0505 = 0.0098  (about 1%)

if 10K people take the test, E(d) = 5

FPs = 0.05 * 9995 = 500 

TPs = 0.99 * 5 =           5.        only 5/505 have d



Bayesian Inference

Testing for hypothesis H given evidence E

- Evidence : based on new observation E

- Prior :  Earlier evaluation about the probability of H

- Likelihood : probability of evidence given hypothesis

P(E|H)

Bayesian inference:  

P (H|E) = P(E|H) P(H) / P(E)

normalization(

(marginal lklihood)

Posterior probability



Bayesian Inference

The fruit picked is an orange 

(o).  What is the probability 

that it’s from the blue box (B)?

P(B|o) = 

P(o|B)p(B) / P(o)

Given: red box is picked 

40%  p(B) = 0.6 

P(o) = (¾*.6 + 1/3*0.4) = 11/20

P(B|o) = ¾ * .6 * 20/11 = 9/11

orange



Continuous variables: 
Probability Densities



Probability Densities
cumulative



Expectations

(both discrete / continuous)

Frequentist approximation w unbiased sample

discrete x continuous x



The Gaussian Distribution



Gaussian Mean and Variance



Central Limit Theorem 

Distribution of sum of N i.i.d. random variables 

becomes increasingly Gaussian for larger N.

Example: N uniform [0,1] random variables.



Gaussian Parameter Estimation

Likelihood function

Observations 
assumed to be 

indpendently
drawn from same 
distribution (i.i.d)



Maximum (Log) Likelihood



Distributions over 
Multi-dimensional spaces



The Multivariate Gaussian

lines of equal 

probability densities





Multivariate distribution

joint distribution P(x,y) varies considerably 

though marginals P(x), P(y) are identical

estimating the joint distribution requires 

much larger sample:  O(nk) vs nk



Marginals and Conditionals

marginals P(x), P(y) are gaussian

conditional P(x|y) is also gaussian



Non-intuitive in high dimensions

As dimensionality 
increases, bulk of 
data moves away 

from center

Gaussian in polar coordinates; 

p(r)δr : prob. mass inside annulus δr at r.



Change of variable x=g(y)



Successive Trials – e.g.  Toss a coin three times:
HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Probability of k Heads:

k 0 1 2 3

P(k) 1/8 3/8 3/8 1/8

Probability of success: p, failure q, then

Bernoulli Process



Model Selection



Model Selection

Cross-Validation



Quantized-Cell Classification

flow data
red: ‘homogenous’,

green : ‘annular’,
blue : ‘laminar’.



Curse of Dimensionality

general cubic polynomial for D dimensions : O(D3) parameters



Curse of Dimensionality

The unit hyper cube and unit sphere in high dimensions

At higher dim, vol(sphere)  / vol(hypercube)   0



Curse of Dimensionality

Polynomial curve fitting, M = 3

Gaussian Densities in 

higher dimensions



Regression with Polynomials



Curve Fitting Re-visited



Bayesian Inference

Testing for hypothesis H given evidence E

Bayesian inference:  

P (H|E) = P(E|H) P(H) / P(E)

likelihood

posterior

prior



Maximum Likelihood

Evidence = t;  Hypothesis = poly(x,w) 



Maximum Likelihood

Determine            by minimizing sum-of-squares error,             

.

Evidence = t;  Hypothesis = poly(x,w) 



Predictive Distribution



MAP: A Step towards Bayes

Determine               by minimizing regularized sum-of-squares error,             

.

MAP = Maximum Posterior



Bayesian Curve Fitting



Bayesian Predictive Distribution



Information Theory



Twenty Questions

Knower: thinks of object (point in a probability space)

Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe?

Knower: No.

Guesser: Is it Valmiki? 

Knower: No.

Guesser: Is it Aunt Lakshmi?

...



Expectations & Surprisal

Turn the key:  expectation:  lock will open

Exam paper showing:  could be 100, could be zero.  

random variable: function from set of marks 

to real interval [0,1]

Interestingness  ∝ unpredictability

surprisal (r.v. = x) = - log2 p(x)

= 0 when p(x) = 1

= 1 when p(x) = ½ 

= ∞ when p(x) = 0



A: 00010001000100010001. . . 0001000100010001000100010001

B: 01110100110100100110. . . 1010111010111011000101100010

C: 00011000001010100000. . . 0010001000010000001000110000

Expectations in data

Structure in data   easy to remember



Entropy

Used in
• coding theory
• statistical physics
• machine learning



Entropy



Entropy

In how many ways can N identical objects be allocated M

bins?

Entropy maximized when



Entropy in Coding theory

x discrete with 8 possible states; how many bits to 

transmit the state of x?

All states equally likely



Coding theory



Entropy in Twenty Questions

Intuitively : try to ask q whose answer is 50-50

Is the first letter between A and M? 

question entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable: 

entropy = - ½ * log2(½) - ½ * log2(½)  = 1.0

For P(Y)=1/1028

entropy = - 1/1028 * -10 - eps =  0.01


