Discovering Models /
Theories
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Domain Theories

e Agent:

given precept history p € P,
select decision from set of choicesag € A

so as to meet a goal g (performance) —
maximize utility function U()

e Requires knowledge of how actions under different precepts
affect the goal

> Model or Theory

e Task domains: a) 8-puzzle, [detrmnstc] b) Soccer [stochastic]



8-puzzle

Precept = state

o2

- Actions = move
Goal : T/F

Utility : num moves
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8-puzzle

State =[7,2,4,5,B,6,8,3,1]

Actions =L,R, U,D

State + Action
- new State

Decision: based on Search
[Informed / Uninformed]
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Breadth-first search

* Expand shallowest unexpanded node

* Fringe: FIFO queue new successors go at end
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Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b?+b3+... +b? + b(b?-1) = O(b%+1)

Space? O(b%*1) (keeps every node in memory)

Optimal? Yes (if cost = 1 per step)
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Iterative-Deepening search
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Cost-based search

* edges don’t have L
equal cost i

 Breadth-first = first

search lower costs
from START

* Fringe: FIFO

O(b1+C/£)




Soccer

Precept = goalie, self, ball

+ wind, opponents,
teammates...

Actions = kick (angle,
speed, swing)

Utility : goal probability




Discrete-Deterministic Spaces:

Search



Uninformed search strategies

Uninformed search strategies use only the
information available in the problem definitio

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

terative deepening search



Breadth-first search

* Expand shallowest unexpanded node

* Fringe: FIFO queue new successors go at end
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Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b?+b3+... +b? + b(b?-1) = O(b%+1)

Space? O(b%*1) (keeps every node in memory)

Optimal? Yes (if cost = 1 per step)




Representing
the state
Space

1. States:

2. Actions:
3. Goal test:

4. Cost:

o2
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8-puzzle heuristics

Admissible:

* hl: Number of misplaced tiles
=6

e h2: Sum of Manhattan
distances of the tiles
from their goal positions

= 0+0+1+1+2+3+1+3=11




8-puzzle heuristics

Nilsson’s Sequence
Score(n) = P(n) + 3 S(n)

P(n) : Sum of Manhattan distances of each tile from
Its proper position

S(n), sequence score : check around the non-central
squares:
+2 for every tile not followed by successor
O for every other tile.
piece in center = +1



Stochastic Spaces



Soccer
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Soccer : Shooting at goal
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Soccer : Shoot, Pass, dribble, or ... ?




Handwritten digits - MNIST
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Discovering theories



Continuous Data
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Discrete Attribute data

 Examples described by attribute values (Boolean, discrete, continuous)
e E.g., situations where | will/won't wait at a restaurant:

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res| Type | Est | Wait
X, T| F F T |Some| $$% F T |French | 0-10 T
Xo T | F F T | Full $ F F | Thai |30-60 F
X3 F| T F F |Some| $ F F | Burger | 0-10 T
Xy T|F | T T | Full $ F F | Thai [10-30| T
X5 T|F | T F Full | $$$ F T |French| =60 F
X F| T F T |Some| %% T T | Italian | 0-10 T
X7 F | T F F | None| % T F | Burger| 0-10 F
Xs F | F F T |Some| %% T T | Thai | 0-10 T
Xy F| T | T F Full $ T F | Burger| =60 F
Xy T| T | T T | Full | $$% F T | Italian | 10-30 F
X1 F F F F | None| $ F F | Thai | 0-10 F
Xi9 T| T | T T | Full $ F F |Burger|[30-60| T

e Classification of examples is positive (T) or negative (F)



Discrete Features

 Parse the sentence: “Time flies like an arrow”

[ ROOT
(3
(NP (NN time))
(VP [(VEZ flies]
(PP [IN like)
(NP (DT an] (MNP arrow] [. .] (HNP *CRE*1)]1]])

kK WEBE FF
tirme fles IM MNP
I .,—'d__'_.-"—"“q"_'\-\.—_——\.
fke DT MNP . NMP May have many parses.
| | | | .
an arrows . *CRX How to rank the choices?



Regression



Modelling as Regression

Given a set of decisions y; based on observations x,,
- derived from unknown function y = f(x)

- with noise

Try to find a model or theory:

y = h(x) = f(x)

where h() is drawn from the hypothesis space — e.g. the space of
radial basis functions, or polynomials, etc.



Polynomial Curve Fitting
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Linear Regression
y=f(x) =2 w. . d.(x)

¢.(x) : basis function

W, :weights

Linear : function is linear in the weights
Quadratic error function --> derivative is linear in w



Sum-of-Squares Error Function
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Ot Order Polynomial




15t Order Polynomial




3'd Order Polynomial




oth Order Polynomial




Over-fitting

—©— Training
—O— Test

M 6 9

Root-Mean-Square (RMS) Error: Egryg = /2E(w*)/N



Polynomial Coefficients

M=0 M=1 M=3 M =09
wg | 019  0.82 0.3l 0.35
w¥ 1.27  7.99 232.37
wi -25.43 -5321.83
Wi 17.37 18568.31
Wy -231639.30
wi 640042.26
Wi -1061800.52
Wk 1042400.18
Wi -557682.99
Wi 125201.43




oth Order Polynomial




Data Set Size: N =15

oth Order Polynomial




Data Set Size: N = 100

oth Order Polynomial




Regularization

Penalize large coefficient values

N
A
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Regularization: In X = —18




Regularization: InA =0




Regularization: Egys VS. InA

Training
Test

%_

-35

-30 i -25 -20



Polynomial Coefficients

InA=-o0 InA=-18 InA=0
wy 0.35 0.35 0.13
w3 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
wy -231639.30 -3.89 -0.03
wi 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
ws | 1042400.18 -45.95 -0.00
w3 -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01



Probability Theory



Learning = discovering regularities

- Regularity : repeated experiments:
outcome not be fully predictable

outcome = “possible world”
set of all possible worlds = Q



Probabllity Theory

Apples and Oranges




Sample Space

Sample w = Pick two fruits,
e.g. Apple, then Orange
Sample Space Q = {(A,A), (A,0),
(0,A),(0,0)}
= all possible worlds

Event e = set of possible worlds, e € Q
 e.g. second one picked Is an apple



Learning = discovering regularities

- Regularity : repeated experiments:
outcome not be fully predictable

- Probability p(e) : "the fraction of possible worlds in
which e is true” i.e. outcome is event e

- Frequentist view : p(e) =limitasN - o2

- Belief view: in wager : equivalent odds
(1-p):p that outcome is in e, or vice versa



Axioms of Probability

True

- non-negative : p(e) >0 A

A-B
o E
/
- unit sum p(Q) =1 *
i.e. no outcomes outside sar e -
S -~

- additive : if el, e2 are disjoint events (no common

outcome):
p(el) + p(e2) =p(el VU e2)
ALT:
p(el Ve2)=p(el) +p(e2)-p(el Ae2)




Why probability theory?

different methodologies attempted for uncertainty:
— Fuzzy logic
— Multi-valued logic
— Non-monotonic reasoning

But unique property of probability theory:

If you gamble using probabilities you have the best
chance in a wager

=> if opponent uses some other system, he's
more likely to lose



Ramsay-diFinetti theorem (1931)

If agent X's degrees of belief are rational, then X's
degrees of belief function defined by fair betting
rates Is (formally) a probability function

Fair betting rates: opponent decides which side one
bets on

Proof: fair odds result in a function pr () that satisifies
the Kolmogrov axioms:

Normality : pr(S) >=0
Certainty : pr(T)=1
Additivity : pr(S1v S2v.. )= 2(Si)



Joint vs. conditional probabillity

Marginal Probability
Y; i } T p(X =) = CN
)
Joint Probability Conditional Probability
PX =2, Y = y;) = -2 p(Y = y|X = ;) = "2

N C;



Probabllity Theory
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Sum Rule
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j=1
L
zi = ) p(X =z,Y =vy;)

Product Rule




Rules of Probability

Sum Rule

Product Rule




Example

A disease d occurs in 0.05% of population. Atestis
99% effective Iin detecting the disease, but 5% of
the cases test positive in absence of d.

10000 people are tested. How many are expected to
test positive?

p(d) =0.0005; p(t/d)=0.99; p(t/~d)=0.05
p(t) = p(t,d) + p(t,~d) [Sum Rule]
= p(t/d)p(d) + p(t/~d)p(~d) [Product Rule]
= 0.99*0.0005 + 0.05 * 0.9995 = 0.0505 =>» 505 +ve



Bayes’ Theorem

p(X]Y)p(Y)
p(X)

p(Y]X) =

p(X)=> p(X[Y)p(Y)

posterior o« likelihood x prior



Bayes’ Theorem

Thomas Bayes (c.1750):
how can we infer causes from effects?
How can one learn the probability of a future event if one knew
only
how many times it had (or had not) occurred in the past?

as new evidence comes in --> prob knowledge improves.
e.g. throw a die. guess is poor (1/6)
throw die again. is it > or < than prev? Can improve guess.
throw die repeatedly. can improve prob of guess quite a lot.

Hence: initial estimate (prior belief P(h), not well formulated)
+ new evidence (support) — compute likelihood P(data|h)
—> improved estimate (posterior P(h|data) )



Example

A disease d occurs in 0.05% of population. Atestis
99% effective in detecting the disease, but 5% of
the cases test positive in absence of d.

If you are tested +ve, what is the probability you have
the disease?

o(d/t) = p(d) . p(t/d) / p(t) : p(t) = 0.0505
o(d/t) = 0.0005 * 0.99 / 0.0505 = 0.0098 (about 1%)

If 10K people take the test, E(d) =5
FPs = 0.05 * 9995 = 500
TPs=0.99*5= 5. = only 5/505 have d



Bayesian Inference

Testing for hypothesis H given evidence E
- Evidence : based on new observation E
- Prior : Earlier evaluation about the probability of H
- Likelihood : probability of evidence given hypothesis
P(E|H)
normalization(
Bayesian inference: / (marginal |klihood)
P (H|E) =P(E|H) P(H) / P(E)

/

Posterior probability



Bayesian Inference

orange

The fruit picked is an orange
(0). What is the probabillity
that it's from the blue box (B)?

P(Blo) =
P(o|B)p(B) / P(0)

Given: red box is picked
40% -> p(B) =0.6

P(0) = (34*.6 + 1/3*0.4) = 11/20

P(B|0) = % * .6 * 20/11 = 9/11



Continuous variables:
Probability Densities



Probability Densities

N cumulative

ox T



Expectations

= 5" (@) (=) E[f] = f p(2)f (x) dz

discrete x continuous X

Freguentist approximation w unbiased sample

1N
ﬁ Z (both discrete / continuous)



T

N (z|p,0%) =

he Gaussian Distribution

1 1 ,
(2wo2)1/2 =P —@(x —H)

Nl o) N (|, 0%) > 0

/ N (z|p,0%) dow =1
20 o




Gaussian Mean and Variance

Elz] = /OO N (z|p,0%) zdz = p
Elz?] = /OO N (zlp,0?) 2* dz = pu° + o

var[z] = E[z?] — E[z]? = o



Central Limit Theorem

Distribution of sum of N I.1.d. random variables
becomes increasingly Gaussian for larger N.

Example: N uniform [0,1] random variables.




Gaussian Parameter Estimation

A

Observations  p(x)
assumed to be
indpendently
drawn from same
distribution (i.i.d)

Likelihood function N
p(x|p, o) = [ [ N (wnln, %)

n=1



Maximum (Log) Likelihood

N
1 N N
lnp(x\‘u o2 :—2— E: Ty, — [4) —31n02—51n(27r)

N
1 o 1 2
HML = N 2_:1% oML — N Z("Bn — /ML)



Distributions over
Multi-dimensional spaces



The Multivariate Gaussian

N, ) = e { - )T x|
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2 lines of equal

probability densities
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Multivariate distribution
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joint distribution P(x,y) varies considerably
though marginals P(x), P(y) are identical

estimating the joint distribution requires
much larger sample: O(nk) vs nk



Marginals and Conditionals

Iy

plTqa, Ty)

plxg|ry = 0.7)

marginals P(x), P(y) are gaussian
conditional P(x|y) is also gaussian



Non-intuitive in high dimensions

As dimensionality
increases, bulk of
data moves away

from center

p(r)

-

Ti

Gaussian in polar coordinates;
p(r)or : prob. mass inside annulus or at r.




Change of variable x=g(y)




Bernoulli Process

Successive Trials — e.g. Toss a coin three times:
HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Probability of k Heads:

k 0 1 2 3
P(ky| 1/8 | 3/8 | 3/8 | 1/8

Probability of success: p, failure g, then

P(k) = ( . )pkq'”’_k




Model Selection



Model Selection

Cross-Validation

run 1

run 2

run 3

run 4



Quantized-Cell Classification

flow data

red: ‘homogenous’,
green : ‘annular’,
blue : ‘laminar’.




Curse of Dimensionality
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Curse of Dimensionality

The unit hyper cube and unit sphere in high dimensions

d=2 d=4 Arbitrary d

At higher dim, vol(sphere) / vol(hypercube) - 0O



Curse of Dimensionality

Polynomial curve fitting, I\/I =3
D D D

y X, w = wWo + ngxz + Zwaxzag + Yyywwkxzmjxk

1=1 j=1 1=1 5=1 k=1

Gaussian Densities In
higher dimensions




Regression with Polynomials



Curve Fitting Re-visited

o T



Bayesian Inference

Testing for hypothesis H given evidence E

likelihood
Bayesian inference:

P (H|E) = P(E[H) P(H) / P(E)

(
/ \ prior

posterior



Maximum Likelihood

Evidence =t; Hypothesis = poly(x,w)

p(tx,w, §) = HN(tn‘y(me)vﬁ_l)

N
N N
Z —t )+ — 5 Ing— 5 In(27)

vy

Inp(t|x,w, ) =

'-\DIQ

BE(w)

1 12
252 xnv



Maximum Likelihood

Evidence =t; Hypothesis = poly(x,w)

p(tx,w, §) = HN(tn‘y(me)vﬁ_l)

n=1

Inp(t|x,w, ) =

'-\DIQ

N
N N
Z (Tny W) —tp}” —|—? Inj3 — 5} In(27)

vy

BE(w)

Determine WnL by minimizing sum-of-squares error, (W)

: = ! Z{y(iﬁn,WML)—tn}Q

v, N —



Predictive Distribution

p(t|x, wyr, L) = N (t\y(a:, WML), ﬁﬁi)




MAP: A Step towards Bayes

p(wla) = N(w|0,a 'T) = (%) e exp {—%WTW}
p(wlx, t, a, B) o p(t|x, w, B)p(w|«)
BE(w :éi (T, W) —tn}* + W Tw
2 — ’ 2

Determine  WatAP by minimizing regularized sum-of-squares error, E(w)

MAP = Maximum Posterior



Bayesian Curve Fitting

p(tlr,x, t) = /p(t|x,w)p(w|x,t) dw = N (t|m(z), s> (z))
m(z) = Bp(x)'S ) | Pp(an)tn $*(x) = B + p(2)"Sp(x)

N
S =al+ 8 dl@n)plan)”  dlan) = (5. aM)"
n=1



Bayesian Predictive Distribution

p(tlz,x,t) = N (tjm(z), s*(x))




Information Theory



Twenty Questions

Knower: thinks of object (point in a probability space)
Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe?
Knower: No.

Guesser: Is it Valmiki?
Knower: No.

Guesser: Is it Aunt Lakshmi?



Expectations & Surprisal

Turn the key: expectation: lock will open

Exam paper showing: could be 100, could be zero.
random variable: function from set of marks
to real interval [0,1]

Interestingness & unpredictability

surprisal (r.v. = x) = - log, p(x)

=0whenp(x)=1
=1 when p(x) = %2
= o« when p(x) =0



Expectations in data

A: 00010001000100010001. . . 0001000100010001000100010001
B: 01110100110100100110. .. 1010111010111011000101100010

C: 00011000001010100000. . . 0010001000010000001000110000

Structure in data > easy to remember



Entropy

Hlz] = — > p(x)log, p(x)

Used in
 coding theory
e statistical physics
* machine learning
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Entropy

In how many ways can N identical objects be allocated M

ing?
bins” A

W p—

1 : n; i\
H= G- lim (ﬁ)ln(ﬁ)——;pﬂ“%

7

Entropy maximized when  Vi:p; = L

<



Entropy In Coding theory

X discrete with 8 possible states; how many bits to
transmit the state of x?

All states equally likely

1 1
H[z] = —8 x 3 log, 3= 3 bits.



Coding theory

x| a b C d s f g h
1 1 1 1 1 1 1 1
p(x) | 5 1 % 16 61 64 64 64
code | 0 10 110 1110 111100 111101 111110 111111
1 1 1 1 1 1 1 1 4 1
Hiz] = —Zlog, = — —log, = — =log, = — — log, — — — log, —
7] g 08275 T B2 T g 0828 T Tg 082 e T g 1082
= 2 bits
de length 1><1+1><2+1><3+1><4+4><1><6
r n — — — _ _ T
average code leng 5 1 3 T 61

= 2 bits



Entropy In Twenty Questions

Intuitively : try to ask g whose answer is 50-50
Is the first letter between A and M?

qguestion entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable:
entropy = - ¥2 * log,(%2) - ¥2 * log,(*2) = 1.0

For P(Y)=1/1028
entropy = - 1/1028 * -10 - eps = 0.01



