
Learning from Observations

Bishop, Ch.1 
Russell & Norvig Ch. 18



Learning as source of knowledge

• Implicit models: In many domains, we cannot 
say how we manage to perform so well

• Unknown environment: After some effort, we 
can get a system to work for a finite 
environment, but it fails in new areas

• Model structures: Learning can reveal 
properties (regularities) of the system behaviour

– Modifies agent's decision models to 
reduce complexity and improve 
performance



Feedback in Learning 

• Type of feedback:
– Supervised learning: correct answers for each 

example
• Discrete (categories) : classification
• Continuous : regression

– Unsupervised learning: correct answers not given

– Reinforcement learning: occasional rewards



Inductive learning
• Simplest form: learn a function from examples

An example is a pair (x, y) : x = data, y = outcome
assume: y drawn from function f(x) :  y = f(x) + noise

f = target function

Problem: find a hypothesis h
such that h ≈ f
given a training set of examples

Note: highly simplified model :
– Ignores prior knowledge : some h may be more likely
– Assumes lots of examples are available
– Objective: maximize prediction for unseen data – Q. How? 



Inductive learning method
• Construct/adjust h to agree with f on training set
• (h is consistent if it agrees with f on all examples)
• E.g., curve fitting:



y = f(x)

Regression:  
y is continuous 

Classification: 
y : set of discrete values 

e.g. classes C1, C2, C3...
y ∈ {1,2,3...}

Regression vs Classification



Precision:  
A / Retrieved 

Positives

Recall:
A / Actual

Positives

Precision vs Recall



Regression



Polynomial Curve Fitting



Linear Regression

y = f(x) = Σi wi . φi(x)

φi(x) :  basis function
wi      : weights

Linear : function is linear in the weights
Quadratic error function --> derivative is linear in w



Sum-of-Squares Error Function



0th Order Polynomial



1st Order Polynomial



3rd Order Polynomial



9th Order Polynomial



Over-fitting

Root-Mean-Square (RMS) Error:



Polynomial Coefficients   



9th Order Polynomial



Data Set Size: 
9th Order Polynomial



Data Set Size: 
9th Order Polynomial



Regularization

Penalize large coefficient values



Regularization: 



Regularization: 



Regularization:          vs. 



Polynomial Coefficients   



Binary Classification



y = f(x)

Regression:  

y is continuous 

Classification: 

y : discrete values e.g. 0,1,2...
for classes C0, C1, C2...

Binary Classification: two classes
y ∈ {0,1}

Regression vs Classification



Binary Classification



Feature : Length



Feature : Lightness



Minimize Misclassification 



Precision / Recall

C1 : class of interest

Which is higher: Precision, or Recall?



Precision / Recall

C1 : class of interest
(Positives)

Recall = TP / TP +FP



Precision / Recall

C1 : class of interest

Precision = TP / TP +FN



Decisions - Feature Space

- Feature selection : which feature is maximally 
discriminative?

– Axis-oriented decision boundaries in feature 
space 

– Length – or – Width – or Lightness? 

- Feature Discovery: construct g(), defined on the 
feature space, for better discrimination



Feature Selection: width / lightness

lightness is more discriminative
- but can we do better?

select the most discriminative feature(s)



- Feature selection : which feature is maximally 
discriminative?

– Axis-oriented decision boundaries in feature 
space 

– Length – or – Width – or Lightness? 

- Feature Discovery: discover discriminative function 
on feature space : g() 

– combine aspects of length, width, lightness 

Feature Selection



Feature Discovery : Linear

Cross-Validation



Decision Surface: non-linear



Decision Surface : non-linear

overfitting!



Learning process

- Feature set : representative? complete?

- Sample size : training set  vs test set

- Model selection: 

– Unseen data   overfitting?

– Quality vs Complexity

– Computation vs Performance



Best Feature set?

- Is it possible to describe the variation in the data in 
terms of a compact set of Features? 

- Minimum Description Length



Probability Theory



Learning = discovering regularities

- Regularity : repeated experiments: 
outcome not be fully predictable

outcome = “possible world”
set of all possible worlds = Ω



Probability Theory
Apples and Oranges



Sample Space

Sample ω = Pick two fruits, 
e.g. Apple, then Orange

Sample Space Ω = {(A,A), (A,O),
(O,A),(O,O)}  

= all possible worlds

Event e = set of possible worlds, e ⊆ Ω
• e.g. second one picked is an apple



Learning = discovering regularities

- Regularity : repeated experiments: 
outcome not be fully predictable

- Probability p(e) : "the fraction of possible worlds 
in which e is true” i.e. outcome is event e 

- Frequentist view :  p(e)  = limit as N → ∞
- Belief view: in wager : equivalent odds 

(1-p):p that outcome is in e, or vice versa



Axioms of Probability

- non-negative : p(e) ≥ 0

- unit sum p(Ω) = 1
i.e. no outcomes outside sample space 

- additive :  if e1, e2 are disjoint events (no 
common outcome):

p(e1) + p(e2)  = p(e1 ∪ e2)
ALT: 

p(e1  ∨ e2) = p(e1) + p(e2) - p(e1 ∧ e2)



Why probability theory?

different methodologies attempted for uncertainty: 
– Fuzzy logic
– Multi-valued logic
– Non-monotonic reasoning

But unique property of probability theory: 

If you gamble using probabilities you have the best 
chance in a wager. [de Finetti 1931]  

=> if opponent uses some other system, he's 
more likely to lose



Ramsay-diFinetti theorem (1931)
If agent X’s degrees of belief are rational, then X ’s 

degrees of belief function defined by fair betting 
rates is (formally) a probability function

Fair betting rates: opponent decides which side one 
bets on

Proof: fair odds result in a function pr () that satisifies 
the Kolmogrov axioms:  

Normality :   pr(S) >=0

Certainty   :  pr(T)=1   

Additivity   : pr (S1 v S2 v.. )= Σ(Si)



Joint vs. conditional probability

Marginal Probability

Conditional ProbabilityJoint Probability



Probability Theory

Sum Rule

Product Rule



Rules of Probability

Sum Rule

Product Rule



Example

A disease d occurs in 0.05% of population.   A test is 
99% effective in detecting the disease, but 5% of 
the cases test positive in absence of d. 

10000 people are tested.  How many are expected to 
test positive? 

p(d) = 0.0005 ;   p(t/d) = 0.99 ;   p(t/~d) = 0.05

p(t) = p(t,d) + p(t,~d)                       [Sum Rule]

= p(t/d)p(d) + p(t/~d)p(~d)        [Product Rule]

= 0.99*0.0005 + 0.05 * 0.9995 = 0.0505    505 +ve



Bayes’ Theorem

posterior ∝ likelihood × prior



Bayes’ Theorem
Thomas Bayes (c.1750): 

how can we infer causes from effects? 
How can one learn the probability of a future event if one knew 
only

how many times it had (or had not) occurred in the past? 

as new evidence comes in --> prob knowledge improves.  
e.g. throw a die. guess is poor (1/6)

throw die again. is it > or < than prev? Can improve guess. 
throw die repeatedly.  can improve prob of guess quite a lot. 

Hence: initial estimate (prior belief P(h), not well formulated)
+ new evidence (support) – compute likelihood P(data|h)
 improved estimate (posterior P(h|data) )



Example
A disease d occurs in 0.05% of population.   A test is 

99% effective in detecting the disease, but 5% of 
the cases test positive in absence of d. 

If you are tested +ve, what is the probability you have 
the disease? 

p(d/t) = p(d) . p(t/d) / p(t)  ; p(t) = 0.0505

p(d/t) = 0.0005 * 0.99 / 0.0505 = 0.0098  (about 1%)

if 10K people take the test, E(d) = 5
FPs = 0.05 * 9995 = 500 
TPs = 0.99 * 5 =           5.        only 5/505 have d



Probability Densities



Expectations

(both discrete / continuous)

Frequentist approximation w unbiased sample

discrete x continuous x



Variances and Covariances

: Sum over x p(x)f(x,y)     --> is a function of y



Gaussian Distribution



The Gaussian Distribution



Gaussian Mean and Variance



Central Limit Theorem 

Distribution of sum of N i.i.d. random variables 
becomes increasingly Gaussian for larger N.

Example: N uniform [0,1] random variables.



Gaussian Parameter Estimation

Likelihood function

Observations 
assumed to be 

indpendently
drawn from same 
distribution (i.i.d)



Maximum (Log) Likelihood



The Multivariate Gaussian

lines of equal 
probability densities





Multivariate distribution

joint distribution P(x,y) varies considerably 
though marginals P(x), P(y) are identical

estimating the joint distribution requires 
much larger sample:  O(nk) vs nk



Marginals and Conditionals

marginals P(x), P(y) are gaussian
conditional P(x|y) is also gaussian



Non-intuitive in high dimensions

As dimensionality 
increases, bulk of 
data moves away 

from center

Gaussian in polar coordinates; 
p(r)δr : prob. mass inside annulus δr at r.



Change of variable x=g(y)



Successive Trials – e.g.  Toss a coin three times:
HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Probability of k Heads:

k 0 1 2 3
P(k) 1/8 3/8 3/8 1/8

Probability of success: p, failure q, then

Bernoulli Process



Model Selection



Model Selection

Cross-Validation



Curse of Dimensionality



Curse of Dimensionality

Polynomial curve fitting, M = 3

Gaussian Densities in 
higher dimensions



Performance measurement

• How do we know that h ≈ f ?
1. Use theorems of computational/statistical learning theory

2. Try h on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size



Regression with Polynomials



Curve Fitting Re-visited



Maximum Likelihood

Determine            by minimizing sum-of-squares error,             
.



Predictive Distribution



MAP: A Step towards Bayes

Determine               by minimizing regularized sum-of-squares error,             
.

MAP = Maximum Posterior



Bayesian Curve Fitting



Bayesian Predictive Distribution



Information Theory



Twenty Questions

Knower: thinks of object (point in a probability space)
Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe?
Knower: No.

Guesser: Is it Valmiki? 
Knower: No.

Guesser: Is it Aunt Lakshmi?
...



Expectations & Surprisal

Turn the key:  expectation:  lock will open

Exam paper showing:  could be 100, could be zero.  
random variable: function from set of marks 

to real interval [0,1]

Interestingness  ∝ unpredictability

surprisal (r.v. = x) = - log2 p(x)
= 0 when p(x) = 1
= 1 when p(x) = ½ 
= ∞ when p(x) = 0



A: 00010001000100010001. . . 0001000100010001000100010001

B: 01110100110100100110. . . 1010111010111011000101100010

C: 00011000001010100000. . . 0010001000010000001000110000

Expectations in data

Structure in data   easy to remember



Entropy

Used in
• coding theory
• statistical physics
• machine learning



Entropy



Entropy

In how many ways can N identical objects be allocated M
bins?

Entropy maximized when



Entropy in Coding theory

x discrete with 8 possible states; how many bits to 
transmit the state of x?

All states equally likely



Coding theory



Entropy in Twenty Questions

Intuitively : try to ask q whose answer is 50-50

Is the first letter between A and M? 

question entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable: 
entropy = - ½ * log2(½) - ½ * log2(½)  = 1.0

For P(Y)=1/1028
entropy = - 1/1028 * -10 - eps =  0.01



Learning Logical Rules 
Decision Trees

Duda and Hart, Ch.1 

Russell & Norvig Ch. 18



Boolean Decision Trees



Attribute-based representations

• Examples described by attribute values (Boolean, discrete, continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)



Learning decision trees

Problem: decide whether to wait for a table at a restaurant, 
based on the following attributes:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Continuous orthogonal domains

classification and regression trees CART 
[Breiman 84]   ID3: [Quinlan 86]



Expressiveness
• Decision trees can express any function of the input attributes.
• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with one path to 
leaf for each example (unless f nondeterministic in x) but it probably won't 
generalize to new examples

• Prefer to find more compact decision trees



Which attribute to use first?

Gain(S; A) = expected reduction in entropy due to sorting on 
attribute A



Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative"

• Gain (Patrons)

• Gain (Type)
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Decision trees

• One possible representation for hypotheses

• E.g., here is the “true” tree for deciding whether to wait:



Information gain

• A chosen attribute A divides the training set E into subsets 
E1, … , Ev according to their values for A, where A has v
distinct values.

• Information Gain (IG) or reduction in entropy from the 
attribute test:

• Choose the attribute with the largest IG
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Too many ways to order the tree

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n

• E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 
trees



Hypothesis spaces
How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

• E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 
trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)?
• Each attribute can be in (positive), in (negative), or out

⇒ 3n distinct conjunctive hypotheses
• More expressive hypothesis space

– increases chance that target function can be expressed
– increases number of hypotheses consistent with training set

⇒ may get worse predictions



Information gain

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

Patrons has the highest IG of all attributes and so is chosen by the DTL 
algorithm as the root
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Decision tree learning

• Aim: find a small tree consistent with the training examples

• Idea: (recursively) choose "most significant" attribute as root of 
(sub)tree



Example contd.

• Decision tree learned from the 12 examples:

• Substantially simpler than “true” tree---a more complex 
hypothesis isn’t justified by small amount of data



Decision Theory



Decision Theory

Inference step
Determine either                  or           .

Decision step
For given x, determine optimal t.



Minimum Expected Loss

Example: classify medical images as ‘cancer’ or ‘normal’

Loss matrix L: 

Decision

Tr
ut

h



Minimum Expected Loss

Regions        are chosen to 
minimize



Reject Option



Why Separate Inference and 
Decision?
• Minimizing risk (loss matrix may change over time)
• Reject option
• Unbalanced class priors
• Combining models



Decision Theory for Regression

Inference step
Determine            .

Decision step
For given x, make optimal 
prediction, y(x), for t.

Loss function:



The Squared Loss Function
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