
Autonomous Navigation of Nao using Kinect
CS365 : Project Report

Samyak Daga Harshad Sawhney
11633 11297

samyakd@iitk.ac.in harshads@iitk.ac.in
Dept. of CSE Dept. of CSE

Indian Institute of Technology, Kanpur

April 21, 2014

Abstract
The navigation of humanoid robots is a non-trivial task
with widespread applications ranging from assisting hu-
mans in their daily chores to manning space missions
to disaster recovery operations. We present a depth
based sensing approach for autonomous navigation of hu-
manoid Nao. The objective is to reach a user desired
goal position from a source position using the data of
depth based sensor for visual servoing. The localization
of the robot is done via Monte Carlo techniques which
uses the RGBD data of Kinect sensor. The cluster of
robot is extracted from the environment followed by KLD
(Kullback-Leibler distance) sampling to accurately track
the robot in real time. The motion control of Nao relies on
the feedback data obtained from the depth sensor to cor-
rect its path which could possibly deviate due to noises in
odometry and sensing information.

1 Introduction
Autonomous navigation of humanoid robots has been a
subject of widespread and lively research over the last
years. The problem is highly challenging and non-trivial,
with heavy potential impact in real world applications and
usage.
Inaccurate foot odometry, noisy overboard sensor infor-
mation caused due to the swaying motion of the hu-
manoid, limitation in mechanical movements and joints,
and the constraints on the degrees of freedom are some
of the problems associated with the navigation of the hu-
manoid. These issues lead to the deviation of the hu-
manoid from its expected path, resulting in not reaching
the desired goal.

Our project tackles the problem of navigation towards a
desired goal position. This has been done in context of
developing an assistive humanoid robot for home environ-
ments for helping the elderly and picking garbage from
the floor.
Our system uses external sensing techniques, in particu-
lar the depth data, for the control of movement. We use
the Kinect data sensor to track and detect the humanoid.
Xbox Kinect is a low-cost sensor equipped with an in-
frared laser which provides a point cloud of the environ-
ment and gives the RGBD data of each such point. The
point cloud is used to track the humanoid in real time.
The humanoid that we employ for testing our approach is
Aldebaran Nao. It is a biped robot with about 25 degrees
of freedom, and a human look alike.

1.1 Related Material

Autonomous navigation has been a problem which has
seen a lot of different methods. Laser sensors, 2D cam-
eras, depth cameras have all been employed with signifi-
cant variations.
Corridor navigation through the use of 2D cameras has
been used by Oriollo et al. [3] with the concept of vanish-
ing point.
In [2] an external Kinect is used to track the 6DOF pose
of Nao, which is then used to navigate to a goal position
serving as an assistant in home-like environments Kinect
has also been mounted on Nao itself by Maeir et al. in [5]
which is then used to detect obstacles and plan the path by
the construction of a heightmap KLD sampling technique
proposed in [4] was used in [4], along with Monte Carlo
localization, for tracking objects in a point cloud Monte
Carlo localization was proposed in [6].

1



Figure 1: The Euclidean segmentation algorithm [1].

2 Approach

2.1 Euclidean Cluster Segmentation
A cluster representing Nao is obtained from the point
cloud obtained from Kinect using Euclidean segmenta-
tion. The motivation behind it is to reduce the processing
time for point cloud P by dividing the unorganized data
using a clustering method based on Euclidean distance
metric. The algorithm is shown in Figure 1 [1].

A K-d tree format is used for storing the point cloud
which helps in efficiently storing the point cloud P . A
K-d tree representation stores the points in a binary tree
format where the centroid of all the particles in its domain
is used to split the point cloud at every depth level. Now,
each point in the point cloud can be accessed quickly,
thus saving time.
Then, each point is taken from the point cloud and a
sphere of radius r is taken around and all those points
lying in the sphere are placed in the same cluster. Then,
for every such neighbour added to the cluster, the same
process is repeated until no more points can be added.
This creates a cluster and by the same method, all possible
clusters can be extracted by using the entire point cloud
data.

Now, we have obtained the cluster of robot as shown
in Figure 4. All the obstacles present in the image are
also clustered and their centroids are obtained through the
point cloud data.

2.2 Tracking

After, we extract the point cloud of Nao robot, the next
task is to track the robot movement in real time motion.
We cannot cluster the robot again and agian by the above
process as it is too slow and real time motion could not be
achieved.
We use particle filter or Monte Carlo localization tech-
nique to track the robot and KLD sampling is used for
sampling the data in the space. We cannot solely depend
on initial data and make the robot move to desired loca-
tion as the walking motion of robot is error prone which
will keep on accumulating over time.

2.2.1 Particle Filter

It is based on the assumption that the current state is de-
pendent only on the previous state and requires a static en-
vironment. Each particle is considered as a possible state.
It consists of three steps which are shown in the Figure 2.

1. Motion Update:
The particles are shifted according to the change in
position of the point cloud. This is predicted using
the approximate point cloud coherence which pre-
dicts the motion of the robot.

2. Sensor Update:
Now, the Kinect sensor provides the estimate of the
robot. This is compared with the predicted position
of the sample particles in the previous step. The sam-

2



Figure 2: Description of the methodology of particle filter [6].

ple particles are provided weight on the basis of the
closeness of the prediction adn the measurement.

3. Resampling:
Now, a new set of particles are drawn using the
weighted probability distribution of the data. Thus,
it effectively helps in tracking the robot by local-
izing its position using the above three steps. The
evaluation function of the weight is based on colour
and distance between the points in the point cloud.

The drawback of it is that it is exponential in state dimen-
sions which effects the real time tracking of Nao robot
so we need to improve the computation speed. This
is achieved by using KLD (Kullback Leibler Distance)
method for sampling the data.

2.2.2 KLD sampling

This method discussed in [4] increases the speed and re-
duces the computation time by adapting the size of sample
set during the sensor update part of tracking. It is based on
the concept that we should use small sample size of parti-
cles if the motion of the robot is little and a larger sample
size for a larger change in position of the robot. The prob-
ability density is shown by the set of samples used. Also,

the better the accuracy of the sensor such that it creates
less noise, then we require a lower sample set.
This technique adapts the number of samples in particle
filter or Monte Carlo methods based on the KL distance
ε between maximum likelihood estimate p(x) and true
probability distribution q(X).

KL− distance(p,q) =
∑

p(x) log(
p(x)

q(x)
) (1)

The above distance is not a metric because it is not
symmetric and does not obey triangle property but it
is still widely used due to its applications. The true
probability distribution is the data obtained through
kinect sensor while the maximum likelihood is the data
obtained thorugh prediction of motion dynamics. The
required number of samples is inversely proportional to
the KL distance obtained.
Thus, it effectively decreases the computation time of
particle filter which is exponential in state dimensions.

2.3 Navigation Control

The method of visual servoing provides a closed loop
feedback for correcting the errors in odometry which

3



Figure 3: The Small Distance Heuristic : The angle α it
needs to rotate.

makes the robot move to the goal position accurately.
We track the centroid of the detected point cloud of Nao
as it moves, and estimate its orientation (where Nao is
looking) with respect to Kinect using a ‘small distance
heuristic’ described below.
Consider an unknown orientation of Nao. If we give it a
small displacement (typically one step) in forward direc-
tion (forward, with respect to itself), there will be some
change in the tracked point cloud and hence there will
be some change in the centroid of the cloud. For small
displacements, we assume that the orientation will not
change, i.e., the vector connecting the initial centroid po-
sition to the final centroid position will be the direction
Nao is headed towards.

Once we know the orientation of Nao, we can rotate
it towards the goal and move it some significant distance
towards the goal. Due to incorrent foot odometry and me-
chanical errors, it will once again deviate from its path.
Therefore, we keep following the ‘small distance heuris-
tic’ till Nao has reached very close to the goal.

Let (x1, y1) be the initial centroid coordinates, (x2, y2)
be the final final centroid coordinates and (xG, yG) be the
goal coordinates then the angle α which Nao needs to ro-
tate to align itself towards the goal can be calculated using
simple geometry as follows:

V1 =
y2 − y1
x2 − x1

(2)

V2 =
yg − y2
xg − x2

(3)

α = angleBetween(V1, V2) (4)

Figure 4: Cluster extracted through the Euclidean seg-
mentation.

Figure 5: The implemented method : the pygame window
is used to give the goal position through mouse. The white
lines show the path followed by Nao.

3 Results
A sample cluster of Nao detected through Kinect can be
seen in Figure 4.
The method was tested using different goal positions
given as an input on a pygame window. The built-in func-
tion moveTo in Nao can be given an input to move in its
forward direction. The small step used to determine ori-
entation in Section 2.3 was kept as 0.08 metres. After
rotation towards the goal, Nao was made to move 0.3 me-
tres forwards towards the goal.
The figure 5 shows a run of this method.

3.1 Problems Faced
The initial attempt of the project focused on mounting
Kinect on Nao’s head and following the approach dis-
cussed in [5]. Figures 6 and 7 show this attempt. But
Kinect was too heavy for proper navigation of Nao, and
resulted in very aberrated motion because of a great shift
in the center of gravity of Nao. Another issue with this

4



Figure 6: The initial attempt : Mounting on head

approach was that the point cloud generated was quite
blurred as the robot was in motion. Thus, the above
approach was discarded. Thus, we fixed the kinect in the
environment space.
The tracking algorithm could be also used for calculating
the orientation of the robot. he issue with it was that
the cluster extracted was with a fixed kinect so the
points obtained in the cluster of Nao did not completely
determine the 3d shape of the robot. So, while tracking
the point cloud shape varied by a lot of margin and hence
the yaw angle obtained was error prone. Thus, we devised
the motion control algorithm which in itself estimated the
orientation of the robot.
We faced with another trouble while we were toiling
in our project. Nao robot’s head got overheated and
Naoqi which is the operating system of the robot stopped
responding. This created a difficult barrier in our task
which was resolved by reflashing the operating system
of the robot. A joke was that we had to do open head
surgery of Nao for reviving it.

4 Future Work

Rather than giving the goal explicitly on the screen, a
goal object can be detected and Nao can be given the goal
to move towards the centroid of that cluster. This can
further be extended to speech controlled home assisting
Nao.
The pose/orientation of the robot can be directly deter-
mined by the present state of the cluster extracted through
aligning two point clouds. However, doing this in real
time is challenging.

Figure 7: The intial attempt : Mounting on head

Obstacle detection can be employed and obstacles can be
detected using the extraction of clusters from the Kinect
sensor. Obstacle avoidance algorithms can be also then
be employed for finding optimal paths.
The minimum sixteen frames per second for efficient
tracking of the robot could not be achieved till now and
possible solution for it is to use GPU parallel processing.

References

[1] Creative Commons Attribution 3.0. Euclidean cluster
extraction, 2014. [Online; accessed 21-April-2014].

[2] Enric Cervera, Amine Abou Moughlbay, and Philippe
Martinet. Localization and navigation of an assistive
humanoid robot in a smart environment.

[3] Angela Faragasso, Giuseppe Oriolo, Antonio Pao-
lillo, and Marilena Vendittelli. Vision-based corri-
dor navigation for humanoid robots. In Robotics and
Automation (ICRA), 2013 IEEE International Confer-
ence on, pages 3190–3195. IEEE, 2013.

[4] Dieter Fox. Adapting the sample size in particle filters
through kld-sampling. The international Journal of
robotics research, 22(12):985–1003, 2003.

[5] Daniel Maier, Christian Lutz, and Maren Bennewitz.
Integrated perception, mapping, and footstep plan-
ning for humanoid navigation among 3d obstacles.
In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pages 2658–
2664. IEEE, 2013.

5



[6] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and
Frank Dellaert. Robust monte carlo localization for
mobile robots. Artificial intelligence, 128(1):99–141,
2001.

[7] R. Ueda. Tracking 3d objects with point cloud library,
2014. [Online; accessed 21-April-2014].

6


