
CS365A: Artificial Intelligence

Potential Guided RRT*

Advisor: Prof. Amitabha Mukherjee

Reid Rizvi Rahman
Roll no: 11594
Sakshi Sinha
Roll no: 11627

April 25, 2014

1 Problem Statement

We are given a workspace which contains a source S, a goal D and a set of
obstacles Q. Our aim is to return a path which connects the source and the
destination while avoiding the set of obstacles. At the same time, we also wish
to minimize the length of this path.

In our model, we will represent this path as a sequence of nodes S, X1, X2,
... Xn, D such that there is an edge connecting every pair of consecutive nodes
and none of these edges collide with the obstacle space Q.

For example, the following figure shows an instance of the workspace with the
source shown in green, the destination in black and the path in blue.

2 Previous Work

2.1 Probabilistic Roadmap:

The PRM algorithm takes random samples from the configuration space and
uses a local planner to connect these configurations to nearby configurations.
Once this is done the source and the destination can be added and any shortest
path algorithm can be used to determine the path.

2.2 RRT Algorithm:

The RRT algorithm aims to return a path by growing a tree rooted at the
source. At each iteration of the algorithm, we generate a random node and add
it to the tree by adding an edge between the newly connected node and the
nearest node already present in the tree.

1



Figure 1: An instance of the robot motion planner.

2.3 RRT* Algorithm:

The main difference between the RRT* algorithm from the RRT is that the upon
every insertion the algorithm updates the distance to all the existing nodes in
the tree thus yielding faster convergence as compared to the RRT.

2.4 Artificial Potential Field:

This method defines an artificial potential using the obstacles and the goal. The
negative gradient of the potential gives the force. The robot always follows the
minimum potential path from the source to the destination.

3 Approach:

Our approach would be to combine the artificial potential model with the RRT*
algorithm to give a potentialised RRT* algorithm to yield a higher convergence
rate in comparison with the RRT* algorithm. At the same this algorithm avoids
the local minima problem that is associated with the artificial potential field
model.

4 Algorithm:

The potentialised RRT* algorithm is a single source-destination algorithm which
grows a tree T rooted at the source. Initially, the source node is added to the
tree. At each iteration a random node x is generated. This node x is then
moved a fixed distance α along the direction of the potential gradient at this
point to give a new node z. This node z is then added to the tree by adding
an edge from this node to another node in the tree such that the distance from
the source to z is minimised. The addition of this node may lead to a situation

2



wherein the distance to some other nodes that are already present need to be
updated. We update these distances at each iteration to maintain the minimum
distance to every node. Also this algorithm does not suffer from the drawback
of local minima in potential that is exhibited by the potential field model.

5 Pseudo Code:

function Potentialised-RRT*(S , D)
V ← {S}
E ← φ
for i = 0, 1, ... n do

5: zrand ← SampleFreei
xrand gets RandomisedGradientDescent(zrand)
xnearest gets Nearest(G, xrand)
xnew gets Steer(xnearest, xrand)
if ObstacleFree(xnearest, xnew) then

10: xnear ← Near(G, xnew, r, η)
V ← V ∪ {xnew}
xrand ← xnearest
cmin ← Cost(xnearest) + c(Line(xnearest, xnew))
for xnear ∈ Xnear do

15: if CollisionFree(xnear, xnew)andCost(xnear) +
c(Line(xnear, xnew))<cmin then

xmin ← xnear
cmin ← Cost(xnear) + c(Line(xnear, xnew))
E ← E ∪ {xmin, xnew}

end if
20: end for

for xnear ∈ Xnear do
if CollisionFree(xnear, xnew)andCost(xnew) +

c(Line(xnear, xnear)) < Cost(xnear) then
xparent ← Parent(xnear)
E ← (E \ {xparent, xnear}) ∪ {xnew, xnear}

25: end if
end for

end if
end for
return G = (V, E)

30: end function

6 Potential Field:

We define distance functions as follows:

βi(q) =

{
−d2(q, qi) + r2i , i=0.

d2(q, qi)− r2i , i¿0.
(1)

3



β(q) =

n∏
i=0

βi(q) (2)

γk(q) = (d(q, goal))2K (3)

n is the number of obstacles in the workspace.
These distances are used for the calculation of artificial potential field of obsta-
cles.

The navigation function in the sphere world is given by

γk(q) =
d2(q, goal)

(d(q, goal)2K + β(q))
1
K

(4)

This function is the artificial potential function for the algorithm.

The gradient of this navigation potential is given by:

5γ(q) =
2d(q, goal)5 d(q, goal)(d(q, goal)2K + β(q))

1
K − d2(q, goal)5 (d(q, goal)2K + β(q))

1
K

(d(q, goal)2K + β(q))
2
K

(5)
The maximum negative gradient(5) gives the direction of movement.

7 Implementation Details:

We implemented the code for potential-guided RRT* in MATLAB. For the pur-
pose of ease of defining potential we approximate the polygonal obstacles using
a combination of circles. This approximation of the polygons using a combi-
nation of circles is done manually i.e. it is hard-coded into our program. The
RRT* tree is stored as a two-column matrix with each row depicting an edge
between the nodes stored in each of the columns. Corresponding to each node,
we store the parent of the node in the RRT* tree and following this parent from
the destination to the source allows us to find the required path.

Function Details:

1. HW2 bozcuoglu: It contains the main function. It generates the random
points to be added to the tree.

2. HW2 bozcuoglu.fig:It is the picture of the GUI.

3. randomConfigFinder: This function generates a random point.

4. checkCollision: It checks that whether the point lies inside the obstacle or
not.

4



5. stepCollisionCheck: This function checks wheter line joining two points
pass through obstacles or not.

6. circle: This function creates circles.

7. rrtConnector: This function takes those points and generates a tree rooted
at the source node.This also returns the parent of each node.

8. navigatial: This function generates a potential field guided path.

9. rrtConnector1:This function takes the randomly generated points and
finds new points biased according to potential field.This function returns
the tree and the parent of each node of the tree.

10. PathFinder: This function formally generates the path by taking all nodes
and their parent node as input returned from rrtConnector.

8 Results

Theoretically, the potential-guided RRT* is expected to give a path which is
farther separated from the goal as compared to the traditional RRT* algorithm
since it takes into account the repulsive potential of the obstacles. When oper-
ated on the same tree for the same source and destination, this is exactly what
the results of the implementation reveals as illustrated from the following figure:

The algorithm also does not suffer from any drawback related to the minima
in potential field. This is clearly exhibited by the path returned by the poten-
tialised RRT* algorithm in the following case where a normal potential field
model would cease to yield accurate results due to the local minima in potential
around the destination. This is illustrated in figure 3.

Also, for the same set of points the potentialised-RRT* is biased towards
the goal and away from the obstacles. This is evident from the following figure
which highlights the fact that the potentialised-RRT* produces a shift in the
nodes away from the obstacles and towards the goal.

9 Major Challenges:

Using MATLAB as the implementation language posed a major hurdle as it is
new to both members of our group. Also, integrating the implementation of
potential field with the RRT* proved a challenge as it required redefining the
obstacles in terms of circles. Also, in this context, we needed to exercise caution
while redefining because any random point generated outside the scope of the
potential function would lead to excessive running time of the algorithm.

5



Figure 2: The path in green is the one returned by potentialised RRT*, the one
is blue is the traditional RRT*.

Figure 3: The path in green is the one returned by potentialised RRT* thus
illustrating that it can even pass through areas of local minima in potential.

6



Figure 4: The red nodes are those produced during normal RRT* and the blue
ones are produced during potentialised-RRT*. Clearly the blue nodes are shifted
away from the obstacles and towards the goal.

10 Future Work:

The current version of motion planning is based on point robots. This could be
extended to include finite-sized robots as in the case of robotic arms etc. Also
the current measure of path is based entirely on the distance to the destination.
Another possible measure could be the nearest distance to the obstacle and that
could be treated as an extension of the algorithms used in this project.

11 References:

1. Potential Guided Directional-RRT* for Accelerated Motion Planning in
Cluttered Environments by A.H. Qureshi, K. F. Iqbal, S. M. Qamar, F.
Islam, Y. Ayaz and N. Muhammad

2. Sampling-based Algorithms for Optimal Motion Planning by S. Karaman
and E. Frazzoli

3. Efficient Local Sampling for Motion Planning of a Robotic Manipulator
by S. Byrne, W. Naeem and R. S. Ferguson

4. http://kovan.ceng.metu.edu.tr/~asil/old/_1./hw4.html

7


