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Abstract

Understanding the topology underlying neural connections and the associ-
ated changes induced by defects is often deemed a promising approach to
deciphering the puzzle of neuro-pathologies, eg. epilepsy, Alzheimer’s dis-
ease.

In this work, we would like to reconstruct the network structure of the
brain from time-series activity of the neurons monitored through calcium-
based fluorescence imaging. Since the connections are directed in nature, the
fundamental obstacle the task entails is that of inferring statistical causality
from time-series data. We investigate various algorithmic techniques used
for inferring statistical causality. In the process, we come across some inter-
esting features exhibited by biological neural networks. We also successfully
mitigate a few challenges particular to the problem.

Figure 1: Network discovery of live neurons through fluorescent calcium
imaging. Neurons the pictures are white dots. The connections recovered
are represented as red arrows. Credits: [4].
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Preface

It is good time to be doing Computational Biology1. Imaging (and in gen-
eral, signal acquisition) techniques have advanced to a point where the rate
of generation of data now exceeds our ability to process it. Automating the
process of drawing useful, robust inferences from such high-volume data is
an essential and challenging task.

Recognizing this challenge, there has been an increased focus on use of
statistics and machine learning in these domains. For example, a lot of
MOOC platforms today offer courses such as Statistical Analysis of fMRI
Data[2] and Data Analysis for Genomics[3]. We tackle a very relevant prob-
lem of reconstruction of neural structure from fluorescence imaging of neural
activity.
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Introduction

“You, your joys and your sorrows, your memories and your ambi-
tions, your sense of identity and free will, are in fact no more than
the behaviour of a vast assembly of nerve cells and their associated
molecules. as Lewis Carroll’s Alice might have phrased it: You’re
nothing but a pack of neurons.”

– Francis Crick, The Astonishing Hypothesis(1994)

1.1 Objectives
The aim of the project is to predict the excitatory connection between neu-
rons given the time series data of neuronal activity captured through flu-
orescence imaging. Understanding the neural connection-topology can be
very helpful in understanding the structure of brain and the unravelling the
mysteries of brain’s learning capacity. It would also facilitate the study of
causes and cures of neuro diseases such as epilepsy, Alzheimer’s disease.

1.2 Some Neurobiology
Neurons are cells which constitute the nervous system. They are electrically
excitable and can transmit electrical and chemical signals. The transfer
of signal occurs through synapses. Dendrites receive the signal through
synapse. Axons carries the signal through a distance and then transmit it.
When the action potential reaches the axon ending, neurotransmitters are
released into the synaptic gap and facilitate the transfer of information.

On an average, the human brain contains about 100 billion neurons.
Coupled with fact that the average number of synaptic connections are about
seven thousand per neuron, it implies that the human neural network is
gigantic compared to the typical number of neurons used in artificial neural
networks.
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1. INTRODUCTION 5

Figure 1.1: Structure of a typical neuron. Credits: Wikipedia

Figure 1.2: Transmission of signal between two neurons via synapse. Credits:
Psychology1003 www.studyblue.com

1.3 Fluorescence Imaging
Fluorescence imaging is a technique which takes advantage of fluorescence
nature of calcium indicators to detect the status of calcium in brain and other
neuron containing tissues. The transmission of signal from one neuron to
the other induces calcium influx in the synapse. This potential influx can
be monitored using calcium indicator dyes. The technique can be applied
to monitor calcium activities, both in-vivo and in-vitro. However, it has a
drawback of low signal to noise ratio. Hence elementary signals are hard to
detect.

www.studyblue.com


1. INTRODUCTION 6

1.4 Existing approaches and Problems
Some contemporary techniques employed for predicting the neural connec-
tivity are the techniques of Axonal Tracing and Electron Microscopy. Trac-
ing at cellular level is a very difficult task and very much due to the large
number of neurons and synaptic connections, Axonal Tracing do not scale
enough to be of practical value. On the other hand, Electron Microscopy is
very costly and cannot be used for any type of in-vivo operation.

1.5 Task Description
The data used in the present work comes from a Kaggle competition[4]. A
description of the same follows – the data consists of:

• Time series of neural activities obtained from fluorescence signals sam-
pled at 20ms intervals.

• (X, Y) coordinates of neurons. Assuming that each neuron spans a 1
mm2 area.

The output format consists of the confidence levels associated with the pres-
ence of directed links between pairs of neurons, so as to be meaningful when
evaluated against an AUC score.

The data provided to us is a synthetic data[4] generated using a realistic
model of neuron and fluorescent imaging. The model has also simulated
limitations and defects of the calcium imaging technology i.e limited time
resolution and light scattering artifacts (which ,means that activity of given
neuron influences the measurements of nearby neurons).
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Statistical Causality

At that time, I had little idea that so many people had very fixed
ideas about causation, but they did agree that my definition was not
“true causation” in their eyes, it was only “Granger causation.” I
would ask for a definition of true causation, but no one would reply.
However, my definition was pragmatic and any applied researcher
with two or more time series could apply it, so I got plenty of
citations. Of course, many ridiculous papers appeared.

– Clive Granger, Nobel Lecture

The task of reverse engineering neural structure topology from the ac-
tivity data seems a very promising venture to by-pass the practical in-
feasibilities that bind the current methods. The goal of this challenge is
to infer directed connections between neurons from time-series patterns of
neural activity. Such a directed graph may be interpreted as a causal net-
work. Further, neurons have complex temporal patterns of activity. The
challenge can therefore be viewed as that of causal structure reconstruction
from time series data[4]. Moreover, such a view seems to be well supported
by the mechanism[11] of neuron firing, especially since we restrict our work
to excitatory neural connections. It has been empirically observed that such
connections tend to enhance the probability of firing of the ’effect’ neuron
if the ’cause’ neuron has fired in the recent past. This draws close parallels
to the events like – analyzing if CO2 causes global warming – which are
classical examples involving statistical causality.

2.1 Why is it difficult?
Statistical causality is often seen as a tricky subject to deal with in the
Statistics community. The challenge becomes even more difficult in case of
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observational studies1. One has to deal with effects such as[13]

• Reverse causation – Anticipating the effect, the cause-inducing agent
changes her actions.

Figure 2.1: SMBC (Saturday Morning Breakfast Cereal) Comics – Reverse
Causality Example

1For an explanation on why this is indeed the case, see [12] which cleanly draws a
contrast between randomized control experiments and observational studies.
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• Regression to the mean – If the first measurement of a random variable
results in an extreme value, the second is likely to be closer to the true
mean than the estimated mean value.

• Common cause based confounding – A common cause results in 2
effects, which may be incorrectly be interpreted as cause-effect pairs.

• Differential selection based confounding – In an observational study,
the composition of groups tends to be such so as to favor a particular
interpretation.

The xkcd comics below do an excellent job at explaining the challenges.

Figure 2.2: xkcd 552: Correlation

In the above comic strip, Cueball is trying to explain Megan that he
earlier thought correlation implies causation but after he took the statistics
class he doesn’t thinks so. When Megan inquired that statistics class was
the causation of his change of belief, he himself is confused! Taking statistics
class was perhaps correlated to his change of belief, but fails to serve as an
evidence for it.

Figure 2.3: xkcd 925: Cell Phones
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In the above comic strip, Cueball tells Black Hat about another study
which showed that cell phones causes cancer. Black Hat tells him that its
the other way. He had a plot which clearly showed that after the cancer rose,
the cell phones rose. Hence, Black Hat believes that cancer is the cause cell
phones. Black Hat’s belief is based on the principle that if X occurs before
Y, then X is the cause of Y which is not always true. This principle forms
the basis of Granger causality (which we explain in the section that follows).

There has been much philosophical debate on whether one can make
claims about causality without disturbing the system itself, that is without
intervening in the working of the system. But, in the current work, we set
these topics aside and look at what we can do given the data at hand – we
look at functional or predictive causality.

2.2 Major Lines of Work
The field of statistical causality has seen two major lines of work – while
one borrows from econometrics and the other from computer science. We
choose to briefly discuss them below.

2.2.1 Conditional Independence

Judea Pearl came up with the idea of representing interacting variables as
vertices on a directed acyclic graph, with the interpretation that edges go
from ’cause’ to ’effect’. Now, in such a graph, if two variables do not have an
edge between them, it can be shown that they are conditionally independent
given that the other vertices hold fixed values. Such vertices, which are
conditionally independent, do not have any cause-effect relationship.

2.2.2 The works of Clive Granger

Granger causality was one of the first ideas introduced for inferring causality
in time series data. The history goes back to Nobel laureate economist Clive
Granger who started looking at how causal relations could be discovered in
time-series data in econometrics[5]. The idea is to see how better can one
do by predicting the current value of the ’effect’ based on the past values of
the ’cause’, as compared to without the past values of ’cause’.

The careful reader will note that the definition is not free of problems.
The author (unashamedly!) generously borrow the following example from
[7] – “A dragonfly flies much lower before a rain storm, due to the lower air
pressure. But, that does not mean that through the activity of flying low
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the dragonfly causes the rain storm.”

While the assertion is true, Granger causality was aimed at only being
a functional measure of causality. So if the past of X helps in predicting
the values of Y, X does functionally cause Y. The quote at the beginning
of the chapter by Granger does better defending the idea.
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Exploratory Data Analysis:
Insights and Discoveries

In this chapter, we develop some insights into the data. Apart from forming
the core of our pre-processing steps and boosting the scores, they also reveal
interesting features of biological neural networks. A few insights help us
pin-pointing the central difficulties associated with the task. We successfully
mitigate a few of these challenges.

3.1 Neural Activity
The first observation is that every spike begins a rapid increase in observed
activity, followed by a slow decay. However, for the purpose of inferring
causality, it suffices to look at spiking times instead of neuron behaviour.
The prolonged period of decay may also adversely affect the performance of
the reconstruction algorithm. We see the above stated behavior in Figure
3.1. Hence, to get an estimate of spiking times. We first differentiate the

Figure 3.1: Neural Activity vs. Time

12



3. EXPLORATORY DATA ANALYSIS: INSIGHTS AND DISCOVERIES13

time-series data, and then mark each point as a spike where the value of the
first derivative exceeds a threshold.

∆(Xn) = Xn+1 −Xn (3.1)

3.2 Collective Synchrony
This section talks about a very interesting discovery about biological neu-
ral networks. We consider the following set of observations. Given a table
of time-series data of 100 neurons, project it onto the time axis, thereby,
computing the net amount of neural activity at given time point. The plot
below demonstrates this. One could infer that at some time points, either

Figure 3.2: Spikes in neural activity indicate collective synchrony.

all or a handful of neurons get hyper-active which results in a very high net
amount of neural activity. It is also useful to note that the onset is sudden
and happens for all involved at about the same time point. To confirm our
intuition, we plot the heatmap of neural activity. Now, we are in a position
to make a stronger statements. There are times at which all the neurons
get activates resulting in a very high net activity, which happens with a
sudden and coherent offset. This phenomena is commonly called "network
burst"[17] or "collective synchrony"[16] in the literature.

In such regions of high activity, inferring the directed connections be-
tween neurons becomes a challenging task, because there are multiple ’cause’
neurons firing at the same time for each ’effect’ neuron. Hence, the connec-
tion inferred during this period can be spurious. To get past this problem,
we ignore the data points from these high activity regions in the data-set.
This change, coupled with the same-bin interaction, boosts the performance
of the algorithms in the next section by about 39%.
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Figure 3.3: Heatmap of Neural Activity vs. Time

3.3 Same-bin Interaction
We also note that the time series resolution is insufficient – that is both
the ’cause’ and ’effect’ can fire within the sampled time point. This can be
demonstrated by some very simple back-of-the-envelope calculation. The
time series data has been sampled at intervals of 20 ms. The speed at which
impulses in neurons travel is about 100 ms−1[14]. This means for the time
series resolution to be sufficient the neurons, on average, must be 2m apart
which is clearly not the case. The authors conjecture that a resolution of
about 0.1 ms would perhaps serve the purpose.

To counter the problem, we introduce a change in all of our algorithms
taking into account the present value of ’cause’ in addition to the other
factors when predicting the present value of the ’effect’. This takes into
account the interactions taking place between cause effect-pairs in the same
time-bin. As a result of our pre-processing steps, the AUC score of the
cross-correlation measure goes up from 0.58 to 0.81.
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Figure 3.4: Pre-processing increases AUC score for Cross Correlation
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Algorithms for Causality
Inference

In this chapter, we briefly review various algorithmic techniques used for es-
tablishing causal relations in our work. The emphasis is on the assumptions
each makes, hence, contrasting the applicability of one against another.

4.1 Cross-correlation
We begin with the simplest measure – cross correlation. The standard cor-
relation between 2 random variables measures how frequently do both vari-
ables attain similar values. The cross correlation extends the idea; and asks
how frequently does the ‘effect’ get activated given that the ‘cause’ was
active in the near past.

XCY→X = max
∆t=0...tmax

corr(XS , YS−∆t) (4.1)

In spite of its inherent simplicity, cross correlation happens to be the de facto
standard in practice today. As we shall see in the next chapter, our study,
to a good extent, justifies this with cross correlation achieving an AUC score
of 0.81 outdoing many sophisticated information-theoretic measures.

4.2 Granger Causality
As described in the previous chapter, the Granger causality involves doing
a linear fit. Mathematically, the procedures involves running a multivariate
linear regression on the current values of ’effect’ with the values of ’past’
values of ’effect’ as covariates in the first go. In the second round, we do a
multivariate linear regression on the current values of ’effect’ with the values
of ’past’ values of ’effect’ and the past values of the ’cause’ as covariates.
If the second regression results in a significantly better fit, one concludes

16
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that the past values of ’cause’ do help in predicting the current values of the
’effect’ – thereby, enforcing that the ’cause’ does indeed cause the ’effect’.

xt =
k∑

l=1
a0

l xt−l + η0
t (4.2)

xt =
k∑

l=1
a1

l xt−l +
k∑

m=1
b1myt−m + η1

t (4.3)

GCY→X = log
Γ0

0,0 + Γ0
1,1

Γ1
0,0 + Γ1

1,1
(4.4)

We use standard notations – Γi is the covariance matrix that results from
each of the fits. There are a handful of assumptions involved here. Leaving
aside any philosophical debate, the idea of taking a linear fit is a pretty
strong one and limits the applicability of the measure. Another serious
issue with this approach is that the method fails in presence of unaccounted
confounding factors. Nevertheless, the idea lends itself to simple and useful
modifications which deal with the stated problems.

4.3 Mutual Information
Mutual information is a measure of how information two random variables
share – the degree of their mutual dependence. It is defined as the difference
in the entropy values assuming the variables are independent and another
case taking into account their joint distribution. It is easy to see that if the
variables are mutually independent, the value is zero. To take into account
the temporal lag, we measure the mutual information of the present of ’effect’
with the past of ’cause’.

MIY→X = max
∆t=0...tmax

∑
n

P (Xn, Yn−∆t) log P (Xn, Yn−∆t)
P (Xn)P (Yn−∆t)

(4.5)

The primary reason why mutual information is often deemed unfit for in-
ferring causal relation is its symmetry (sans the temporal lag) among the
two variables. In particular, not considering the temporal lag introduced,
MI(X,Y ) = MI(Y,X).

4.4 Information Gain
Information gain is a general framework for looking at the causal measures.
Given any function I(X) which is a representative of some measure of in-
formation content of a variable, we compute the difference between the
marginal and conditional distributions.

IGY→X = I(X)− I(X|Y ) (4.6)
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4.4.1 Entropy based Gain Measure

An obvious choice of I(X) is the entropy, which yields many mathemati-
cally aesthetic properties. The entropy content of a random variable can
be viewed as the expected number of bits required to report an event that
the variable can attain. In some sense, it is a measure of compressibility. It
is instructive to note that the entropy is maximum when the distribution
is uniform – since you can not dis-count occurrence of some event. On the
other hand, for a skewed event, the entropy can be quite low.

I(X) =
n∑

i=1
P (Xi) log 1

P (Xi)
(4.7)

4.4.2 Gini Index based Gain Measure

Another popular choice of I(X) is the Gini Index, which is computed as
the formula below. The Gini index is a measure of how the data is spread
– dispersion. Our experimental analysis indicates that the Gini index and
entropy measures have comparable performance.

G(X) = 1−
n∑

i=1
P (Xi)2 (4.8)

4.5 Generalized Transfer Entropy
Our weapon of choice in the present work is Transfer Entropy introduced by
Thomas Schreiber[8]. Since it involves conditional probability distribution,
it is clearly asymmetric, in contrast with mutual information. Hence, it
is capable of representing directional information. All the other methods
surveyed up till this point assume the joint probability distribution does not
change with time. It can be shown that the Transfer Entropy does not make
any such assumption[8], while retaining the capability of representing non-
linear measurements. Being devoid of such an assumption allows Transfer
Entropy to ignore the common history and up to a certain extent, even, the
confounding factors.

TEY→X =
∑

n

(P (Xn+1, X
(k)
n , Y (k)

n ) log P (Xn+1|X(k)
n , Y

(k)
n )

P (Xn+1|X(k)
n )

) (4.9)

4.6 Combined Linear Model
At this point, for each pair of neurons, we have the scores due to each of the
measures describe above. We ask the question if it is possible to combine
the features to be able to better predict the causal relations. To do this,
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we fit a linear model, treating the scores obtained as features, on some
dataset for which the ground truth is given. This allows us to predict causal
relations for test data. Not very surprisingly, the linear fit learnt has a large
coefficient for Transfer Entropy measure, which it is the most successful of
all measures. However, as we shall see in the next chapter, this does not
result in a significant improvement compared to Transfer Entropy.
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Results

The results obtained using various algorithms are summarized in the table
below, along with the ROC curves. The ROC – Receiver Operator Char-

Algorithm AUC
Generalized Transfer Entropy 0.83

Combined Linear Model 0.83
Cross Correlation 0.81

Information Gain (Gini) 0.78
Information Gain (Entropy) 0.76

Mutual Information 0.75
Granger Causality 0.49
Random Score 0.50

Table 5.1: Final results.

acteristic – curve yields a value of 0.5 on the random score method, as is
theoretically expected. A few remarks are due.

• Generalized Transfer Entropy seems to do the best. This can be at-
tributed to it making fewer assumptions on the data – for example,
not assuming that the joint probability distribution is time invariant.

• The combined linear model does as good as the Generalized Transfer
Entropy. Not surprisingly, it also learns a large coefficient for GTE
scores, when compared against other features.

• Granger Causality proves to be just as bad as making random guesses.
The assumptions that the cause effect relationship can be explained
by a linear model does not hold good in the data. We think that this
is primary reason why Granger Causality fails so badly.

20
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Figure 5.1: ROC Curve for {GTE, Information Gain (Gini), Granger Causal-
ity}
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Figure 5.2: ROC Curve for {Cross Correlation, Information Gain (Entropy),
Random Score}
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Figure 5.3: ROC Curve for {Linear Model, Mutual Information}
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Future Work

The authors would like to state that the work done is no way complete and
there are many (possibly easy to do) small tweaks as well as alternative
approaches possible. A few promising ones are summarized below.

• Complex Models: With all the features (scores) computed, one
could look at more complex models than linear fits, like SVMs and
neural nets. While one has to be careful enough not to overfit, the
chances of overfit are minimal – since the data is low-dimensional
(6− 10 features) and the number of samples are many (about 104).

• Blind Deconvolution Techniques: The data suffers from a low
signal-to-noise ratio. In such scenarios, to counteract light scatter-
ing effects, one could utilize one of the available blind deconvolution
techniques like [9].

• Sparsity Inducing Models: All of our approaches take into local
factors – that is for deciding if there is a directed connection from A
to B, we only take into account the time-series data of A and B. This
may possibly be a major limitation. One way to mitigate this it to
look at sparsity inducing reconstruction algorithms. These have been
studied to some extent in the context gene regulatory networks[10].
Another idea is to resort to bayesian machine learning with sparsity
inducing priors.

• Speeding up existing algorithms: Improving upon run time of
existing algorithms will a great service to the community allowing for
researchers to look at more expensive algorithms. As of now, the
size of a data set serves a major obstacle to using more sophisticated
algorithms.
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