Topological Data Analysis

A Framework for Machine Learning

Samarth Bansal (11630) Deepak Choudhary (11234)

Motivation

"Ayasdi was started in 2008 to bring a groundbreaking new approach to solving the world's most complex problems after a decade of research at Stanford, DARPA and NSF"

What is Topology?

Topology is a branch of mathematics from the 1700's that studies continuity and connectivity of objects and spaces, utilizing the shape of data to derive meaning in data.

Data has shape. Shape has meaning. Meaning derives value.

Goal of TDA : Understand shape without any pre-conceived model

What is TDA?

Extract robust topological features from data and use these summaries for modelling the data.

Formal Definition

Given a finite dataset $S \subseteq Y$ of noisy points sampled from an unknown space X, topological data analysis recovers the topology of X, assuming both X and Y are topological spaces.

Difference?

Principal Component Analysis (PCA) assumes that X is a linear subspace, a flat hyper plane with no curvature.

ISOMAP assumes that X is intrinsically flat, but is iso-metrically embedded.

Both are instances of **manifold learning** Assumption : X is a manifold, that is, it is locally Euclidean.

TDA is **model free** than most statistical methods, since it does not use an a priori linear or algebraic model for the data, rather relies only on measures of similarity.

NO Assumption

Slide adopted from Anthony Bak's talk on TDA at Stanford Univeristy as part of Colloquium on Computer Systems Seminar Series (EE380)

Slide adopted from Anthony Bak's talk on TDA at Stanford Univeristy as part of Colloquium on Computer Systems Seminar Series (EE380)

Standard da	ta analysis functions	5	
Geometry ar	nd Topology		
Modern Stat	istics		
Domain Kno	wledge / Data Mode	ling	
 Domain Kho 	wiedge / Data Mode	ang	
	A Non Exhau	stive Table of Lenses	
Statistics	A Non Exhau Geometry	stive Table of Lenses Machine Learning	Data Drive
Statistics Mean/Max/Min	A Non Exhau Geometry Centrality	stive Table of Lenses Machine Learning PCA/SVD	Data Drive Age
Statistics Mean/Max/Min Variance	A Non Exhau Geometry Centrality Curvature	stive Table of Lenses Machine Learning PCA/SVD Autoencoders	Data Drive Age Dates
Statistics Mean/Max/Min Variance n-Moment	A Non Exhau Geometry Centrality Curvature Harmonic Cycles	stive Table of Lenses Machine Learning PCA/SVD Autoencoders Isomap/MDS/TSNE	Data Drive Age Dates
Statistics Mean/Max/Min Variance n-Moment Density	A Non Exhau Geometry Centrality Curvature Harmonic Cycles	stive Table of Lenses Machine Learning PCA/SVD Autoencoders Isomap/MDS/TSNE SVM Distance from Hyperplane	Data Drive Age Dates
Statistics Mean/Max/Min Variance n-Moment Density	A Non Exhau Geometry Centrality Curvature Harmonic Cycles	stive Table of Lenses Machine Learning PCA/SVD Autoencoders Isomap/MDS/TSNE SVM Distance from Hyperplane Error/Debugging Info	Data Drive Age Dates

Slide adopted from Anthony Bak's talk on TDA at Stanford Univeristy as part of Colloquium on Computer Systems Seminar Series (EE380)

Visualization Techniques

Scatterplot methods, PCA, MDS

• A topological network represents data by grouping similar data points into nodes, and connecting those nodes by an edge if the corresponding collections have a data point in common.

• Because each node represents multiple data points, the network gives a compressed version of extremely high dimensional data.

Cluster Analysis

Cluster analysis Goal : Divide a data set up into disjoint groups that have some distinct defining properties, or conceptual coherence.

What about this?

Hystersis loop of the C/Q relationship

Discharge (m3 s-1)

TDA!

Hystersis loop of the C/Q relationship

Data transformed into topological networks reveals insights and hidden patterns

The combination of Topological Data Analysis (TDA) with machinelearning automatically creates topological networks revealing statistically significant patterns in complex data

Project Aim

Compare TDA with traditional ML Algorithms

Datasets

Heart Disease Data Set

UCI Machine Learning – 303 Instances, 75 Attributes

Breast Cancer Wisconsin (Original) Data Set

UCI Machine Learning – 699 Instances, 10 Attributes

References

- Gunnar Carlsson,2009, Bulletin (New Series) of The American Mathematical Society, Volume 46, Number 2, April 2009, Pages 255–308
- Lum, P.Y.et al. Extracting insights from the shape of complex data using topology. Sci. Rep. 3, 1236; DOI:10.1038/srep01236 (2013).
- Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Monica Nicolaua, Arnold J. Levineb, and Gunnar Carlssona, Department of Mathematics, Stanford University, Stanford, CA 94305; School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540; and Ayasdi, Inc., Palo Alto, CA 94301