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Abstract

Existing max-margin supervised topic mod-
els rely on an iterative procedure to solve
multiple latent SVM subproblems with addi-
tional mean-field assumptions on the desired
posterior distributions. This paper presents
Gibbs max-margin topic models by minimiz-
ing an expected margin loss, an upper bound
of the existing margin loss derived from an
expected prediction rule. By introducing
augmented variables, we develop simple and
fast Gibbs sampling algorithms with no re-
stricting assumptions and no need to solve
SVM subproblems for both classification and
regression. Empirical results demonstrate
significant improvements on time efficiency.
The classification performance is also signifi-
cantly improved over competitors.

1. Introduction

As supervising information gets easier to obtain, de-
veloping supervised latent topic models has attracted
a lot of attentions. Both maximum likelihood estima-
tion (MLE) and max-margin learning have been ap-
plied to learn supervised topic models. Different from
the MLE-based approaches (Blei & McAuliffe, 2007),
which define a normalized likelihood model for re-
sponse variables, max-margin supervised topic models,
such as maximum entropy discrimination LDA (MedL-
DA) (Zhu et al., 2009), directly minimize a margin-
based loss derived from an expected prediction rule.

Although max-margin supervised topic models have
shown superior performance in various settings, such
as text mining (Zhu et al., 2009) and image annota-
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tion (Yang et al., 2010), their learning problems are
generally hard to solve. Existing methods rely on a
variational approximation scheme with strict mean-
field assumptions on posterior distributions, and they
normally need to solve multiple latent SVM subprob-
lems in an EM-type iterative procedure. The recent
work (Jiang et al., 2012) developed Monte Carlo (M-
C) methods for such max-margin topic models, with a
weaker mean-field assumption; but they also need to
solve multiple SVM problems. Thus, their efficiency
could be limited as learning SVMs is normally compu-
tationally demanding. Also, it is not easy to parallelize
these algorithms for large-scale applications.

This paper presents Gibbs MedLDA, a new formula-
tion of max-margin supervised topic models with effi-
cient inference algorithms. Instead of minimizing the
margin loss of an expected prediction rule as adopted
in MedLDA, Gibbs MedLDA minimizes the expect-
ed margin loss of many latent prediction rules, each
rule corresponding to a configuration of topic assign-
ments and the prediction model, drawn from a post-
data posterior distribution. Theoretically, the expect-
ed margin loss is an upper bound of the existing margin
loss of an expected prediction rule. Computationally,
although the new margin loss can be hard in devel-
oping variational algorithms, we can develop simple
and fast collapsed Gibbs sampling algorithms without
any restricting assumptions on the posterior distribu-
tion, by exploiting the classical ideas of data augmen-
tation (Dempster et al., 1977; Tanner & Wong, 1987;
van Dyk & Meng, 2001) and its recent extensions to
max-margin classifiers (Polson & Scott, 2011). We
further generalize the ideas to develop a Gibbs MedL-
DA regression model and its Gibbs sampling algorithm
with data augmentation. Empirical results on real da-
ta sets demonstrate significant improvements on time
efficiency. The classification performance is also sig-
nificantly improved.

The paper is organized as follows. Sec 2 reviews MedL-
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DA and its EM-type algorithms. Sec 3 presents Gibbs
MedLDA and its sampling algorithms for classification
and regression. Sec 4 presents empirical results. Sec 5
concludes and discusses future directions.

2. MedLDA

We consider binary classification with a labeled train-
ing set D = {(wd, yd)}Dd=1, where the response variable
Y takes values from the output space Y = {−1,+1}.
MedLDA consists of two parts — an LDA model for
describing input documents W = {wd}Dd=1, where

wd = {wdn}Nd
n=1 denote the words appearing in doc-

ument d, and an expected classifier for considering the
supervising signal y = {yd}Dd=1. Below, we introduce
each of them in turn.

LDA: LDA is a hierarchical Bayesian model that
posits each document as an admixture of K topics,
where each topic Φk is a multinomial distribution over
a V -word vocabulary. For document d, the generating
process can be described as
1. draw a topic proportion θd ∼ Dir(α)
2. for each word n (1 ≤ n ≤ Nd):

(a) draw a topic assignment1 zdn ∼ Mult(θd)

(b) draw the observed word wdn ∼ Mult(Φzdn)

where Dir(·) is a Dirichlet distribution; Mult(·) is
multinomial; and Φzdn denotes the topic selected by
the non-zero entry of zdn. The topics are random sam-
ples drawn from a prior, e.g., Φk ∼ Dir(β).

Given a set of documentsW, we let zd={zdn}Nd
n=1, Z=

{zd}Dd=1, and Θ= {θd}Dd=1. LDA infers the posterior
distribution p(Θ,Z,Φ|W) ∝ p0(Θ,Z,Φ)p(W|Z,Φ).
We can show that the posterior distribution by Bayes’
rule is the solution of an information theoretical
optimization problem

min
q(Θ,Z,Φ)

KL[q(Θ,Z,Φ)∥p0(Θ,Z,Φ)]−Eq[log p(W|Z,Φ)]

s.t. : q(Θ,Z,Φ) ∈ P, (1)

where KL(q||p) is the Kullback-Leibler divergence, and
P is the space of probability distributions. In fact, if
we add the constant log p(W) to the objective, it is
the minimization of KL(q(Θ,Z,Φ)∥p(Θ,Z,Φ|W)).

Expected Classifier: Given a training set D, an
expected classifier chooses a posterior distribution
q(h|D) over a hypothesis space H of classifiers such
that the q-weighted (expected) classifier hq(w) =
signEq[h(w)] will have the smallest possible risk.
MedLDA follows this principle to learn a posterior
q(η,Θ,Z,Φ|D) such that the expected classifier

ŷ = signF (w) (2)

1A K-dim binary vector with only one nonzero entry.

has the smallest possible risk, approximated by
the training error RD(q) =

∑
d I(ŷd ̸= yd). The

discriminant function is defined as

F (w) = Eq(η,z|D)[F (η, z;w)], F (η, z;w) = η⊤z̄

where z̄ is a vector with element z̄k = 1
N

∑N
n=1 I(zkn =

1), and I(·) is an indicator function that equals to 1
if predicate holds otherwise 0. Note that the expect-
ed classifier and the LDA likelihood are coupled via
the latent topic assignments Z. The strong coupling
makes it possible for MedLDA to learn a posterior dis-
tribution that can describe the observed words well
and make accurate predictions.

Regularized Bayesian Inference: To integrate the
above two components for hybrid learning, MedlDA
regularizes the properties of the topic representations
by imposing the following max-margin constraints
derived from the classifier (2) to a standard LDA
inference problem (1)

ydF (wd) ≥ ℓ− ξd, ∀d, (3)

where ℓ (≥ 1) is the cost of making a wrong
prediction; and ξ = {ξd}Dd=1 are non-negative
slack variables for inseparable cases. Let
L(q)=KL(q||p0(η,Θ,Z,Φ))−Eq[log p(W|Z,Φ)] be the
objective for doing standard Bayesian inference with
the classifier η and p0(η,Θ,Z,Φ) = p0(η)p0(Θ,Z,Φ).
MedLDA solves the regularized Bayesian infer-
ence (Zhu et al., 2011) problem

min
q(η,Θ,Z,Φ)∈P,ξ

L(q(η,Θ,Z,Φ)) + 2c
∑
d

ξd (4)

∀d, s.t.: ydF (wd) ≥ ℓ− ξd, ξd ≥ 0,

where the margin constraints directly regularize the
properties of the post-data distribution and c is
the positive regularization parameter. Equivalently,
MedLDA solves the unconstrained problem2

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ)) + 2cR(q(η,Θ,Z,Φ)) (5)

where R(q) =
∑

d max(0, ℓ − ydF (wd)) is the hinge
loss that upper bounds the training error RD(q) of
the expected classifier (2). Note that the factor 2 is
included simply for convenience.

2.1. Existing Iterative Algorithms

Since it is intractable to solve problem (4) or (5)
directly, both variational and Monte Carlo method-
s have been developed for approximate solutions. It
can be shown that the variational method (Zhu et al.,
2012) is a coordinate descent algorithm to solve prob-
lem (5) with the fully-factorized assumption that

2If not specified, q is subject to the constraint q ∈ P.
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q(η,Θ,Z,Φ) = q(η)(
∏

d q(θd)
∏

n q(zdn))
∏

k q(Φk),
while the Monte Carlo methods (Jiang et al., 2012)
make a weaker assumption that q(η,Θ,Z,Φ) =
q(η)q(Θ,Z,Φ). All these methods have a similar EM-
type iterative procedure, which solves many latent
SVM subproblems, as outlined below.

Estimate q(η): Given q(Θ,Z,Φ), this step solves

min
q(η),ξ

KL(q(η)∥p0(η)) + 2c
∑
d

ξd

∀d, s.t. : ydEq[η]
⊤Eq[z̄d] ≥ ℓ− ξd, ξd ≥ 0.

(6)

When the prior p0(η) is the commonly used standard
normal, we have the optimum solution q(η) = N (κ, I),
where κ =

∑
d ydµdEq[z̄d] and µd are Lagrange multi-

pliers. It can be shown that the dual problem of (6)
is the dual of a standard binary linear SVM and we
can solve it or its primal form efficiently using existing
high-performance SVM learners. We denote the opti-
mum solution of this problem by (q∗(η),κ∗, ξ∗,µ∗).

Estimate q(Θ,Z,Φ): Given q(η), this step solves

min
q(Θ,Z,Φ),ξ

L(q(Θ,Z,Φ)) + 2c
∑
d

ξd

∀d, s.t. : yd(κ
∗)⊤Eq[z̄d] ≥ ℓ− ξd, ξd ≥ 0.

(7)

Although we can solve this problem using Lagrangian
methods, it would be hard to derive the dual objec-
tive. An effective approximation strategy was used
in (Zhu et al., 2012; Jiang et al., 2012), which updates
q(Θ,Z,Φ) for only one step with ξ fixed at ξ∗. By
fixing ξ at ξ∗, we have the solution q(Θ,Z,Φ) ∝
p(W,Θ,Z,Φ) exp{(κ∗)⊤

∑
d µ

∗
dz̄d}, where the second

term indicates the regularization effects due to the
max-margin posterior constraints. For those data with
non-zero Lagrange multipliers (i.e., support vectors),
the second term will bias MedLDA towards a new pos-
terior distribution that favors more discriminative rep-
resentations on these “hard” data points. The Monte
Carlo methods directly draw samples from the poste-
rior distribution q(Θ,Z,Φ) or its collapsed form using
Gibbs sampling to estimate Eq[z̄d], the expectation-
s required to learn q(η). In contrast, the variational
methods solve problem (7) using coordinate descent to
estimate Eq[z̄d] with a fully factorized assumption.

3. Gibbs MedLDA

Now, we present Gibbs max-margin topic models and
their “augment-and-collapse” sampling algorithms.

3.1. Learning with an Expected Margin Loss

As stated above, MedLDA chooses the strategy to min-
imize the hinge loss of an expected classifier. In learn-
ing theory, an alternative approach to building classi-

fiers with a posterior distribution of models is to mini-
mize an expected loss, under the framework known as
Gibbs classifiers (or stochastic classifiers) (McAllester,
2003; Catoni, 2007; Germain et al., 2009) with nice
theoretical properties.

For our case of inferring the distribution of latent
topic assignments Z and the classification model η,
the expected margin loss is defined as follows. If we
have drawn a sample of the topic assignments Z and
the prediction model η from a posterior distribution
q(η,Z), we can define the linear discriminant function
F (η, z;w) = η⊤z̄ as before and make prediction using
the latent Gibbs rule

ŷ = signF (η, z;w). (8)

Let ζd = ℓ − ydη
⊤z̄d. The hinge loss of the classifier

is R(η,Z) =
∑

d max(0, ζd) and the expected hinge
loss is

R′(q) = Eq[R(η,Z)] =
∑
d

Eq[max(0, ζd)].

Since R(η,Z) ≥
∑

d I(yd ̸= ŷd) for any (η,Z), we have
R′(q) ≥

∑
d Ep[I(yd ̸= ŷd)]. In other words, R′(q) is

an upper bound of the expected training error of the
Gibbs classifier (8). Thus, it is a good surrogate loss
for training.

Then, with the same goal as MedLDA to find a
posterior distribution q(η,Θ,Z,Φ) that on one hand
describes the observed data and on the other hand
predicts as well as possible on training data, we
define Gibbs MedLDA as solving the new regularized
Bayesian inference problem

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ)) + 2cR′(q(η,Θ,Z,Φ)). (9)

Comparing to MedLDA in problem (5), we have the
following lemma by applying Jensen’s inequality.

Lemma 1 The expected hinge loss R′ is an upper
bound of the hinge loss of the expected classifier (2):

R′(q) ≥
∑
d

max(0,Eq[ζd]).

3.2. Formulation with Data Augmentation

If we directly solve problem (9), the expected hinge
loss R′ is hard to deal with because we do not have
a closed-form of the expectation of the max function.
Fortunately, we can develop a simple collapsed Gibbs
sampling method based on a data augmentation for-
mulation of the expected hinge-loss.

Let ϕ(yd|zd,η) = exp{−2cmax(0, ζd)} be the unnor-
malized pseudo-likelihood of the response variable for
document d. Then, problem (9) can be written as

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ))− Eq[log ϕ(y|Z,η)], (10)
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where ϕ(y|Z,η) =
∏

d ϕ(yd|η, zd). Solving prob-
lem (10) with the constraint that q(η,Θ,Z,Φ) ∈ P,
we can get the normalized posterior distribution

q(η,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ϕ(y|Z,η)

ψ(y,W)
,

where ψ(y,W) is the normalization constant. Us-
ing the ideas of data augmentation (Tanner & Wong,
1987; Polson & Scott, 2011), we have Lemma 2.

Lemma 2 (Scale of Mixture) The unnormalized
pseudo-likelihood can be expressed as

ϕ(yd|zd,η) =
∫ ∞

0

1√
2πλd

exp
(
− (λd + cζd)

2

2λd

)
dλd

Proof: Due to the fact that amax(0, x) = max(0, ax)
if a ≥ 0, we have −2cmax(0, ζd) = −2max(0, cζd).
Then, we can follow the proof in (Polson & Scott,
2011) to get the results.

Lemma 2 indicates that the posterior distribution of
Gibbs MedLDA, q(η,Θ,Z,Φ), can be expressed as
the marginal of a higher dimensional distribution that
includes the augmented variables λ. The complete
posterior distribution is

q(η,λ,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ϕ(y,λ|Z,η)

ψ(y,W)
,

where the pseudo-joint distribution of y and λ is

ϕ(y,λ|Z,η) =
∏
d

1√
2πλd

exp
(
− (λd + cζd)

2

2λd

)
.

In fact, we can show that the complete posterior
distribution is the solution of the data augmentation
problem of Gibbs MedLDA

min
q(η,λ,Θ,Z,Φ)

L(q(η,λ,Θ,Z,Φ))− Eq[log p(y,λ|Z,η)],

which is again subject to the normalization constraint
that q(η,λ,Θ,Z,Φ) ∈ P.

3.3. Inference with Collapsed Gibbs Sampling

Although we can do Gibbs sampling to infer the com-
plete posterior distribution q(η,λ,Θ,Z,Φ) and thus
q(η,Θ,Z,Φ) by ignoring λ, the mixing rate would
be slow due to the large sample space. One way to
effectively reduce the sample space and improve mix-
ing rates is to integrate out the intermediate Dirichlet
variables (Θ,Φ) and build a Markov chain whose equi-
librium distribution is the resulting marginal distribu-
tion q(η,λ,Z). We propose to use collapsed Gibbs
sampling, which has been successfully used in LDA
(Griffiths & Steyvers, 2004). With the data augmen-
tation representation, this leads to an “augment-and-
collapse” sampling algorithm for Gibbs MedLDA.

For Gibbs MedLDA, the collapsed posterior distribu-
tion is

q(η,λ,Z) ∝ p0(η)p(W,Z|α,β)ϕ(y,λ|Z,η)

= p0(η)
[ D∏
d=1

δ(Cd +α)

δ(α)

] K∏
k=1

δ(Ck + β)

δ(β)

×
D∏

d=1

1√
2πλd

exp
(
− (λd + cζd)

2

2λd

)
,

where δ(x) =
∏dim(x)

i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
, Ct

k is the number of times

the term t being assigned to topic k over the whole
corpus and Ck = {Ct

k}Vt=1; C
k
d is the number of times

that terms being associated with topic k within the
d-th document and Cd = {Ck

d}Kk=1. Then, the condi-
tional distributions used in collapsed Gibbs sampling
are as follows.

For η: let’s assume its prior is an isotropic Gaussian
distribution p0(η) =

∏
k N (ηk; 0, ν

2). Then, we have

q(η|Z,λ) ∝ p0(η)
∏
d

exp
(
− (λd + cζd)

2

2λd

)
∝ exp

(
−

∑
k

η2k
2ν2

−
∑
d

(λd + cζd)
2

2λd

)
= N (η;µ,Σ), (11)

where the posterior mean is µ = Σ(c
∑

d yd
λd+cℓ
λd

z̄d)

and the covariance matrix is Σ = ( 1
ν2 I +

c2
∑

d
z̄dz̄

⊤
d

λd
)−1. Therefore, we can easily draw a sample

from a K-dimensional multivariate Gaussian distribu-
tion. The inverse can be robustly done using Cholesky
decomposition, an O(K3) procedure. Since K is nor-
mally not large, the inversion can be done efficiently.

For Z: The conditional distribution of Z is

q(Z|η,λ) ∝
D∏

d=1

δ(Cd +α)

δ(α)
exp

(
− (λd + cζd)

2

2λd

)
×

K∏
k=1

δ(Ck + β)

δ(β)
.

By canceling common factors, we can derive the
conditional distribution of one variable zdn given
others Z¬ as:

q(zkdn = 1|Z¬,η,λ, wdn = t)

∝
(Ct

k,¬n + βt)(C
k
d,¬n + αk)∑

t C
t
k,¬n +

∑V
t=1 βt

exp
(γyd(cℓ+ λd)ηk

λd

− c2
γ2η2k + 2γ(1− γ)ηkΛ

k
dn

2λd

)
, (12)

where C ·
·,¬n indicates that term n is excluded from

the corresponding document or topic; γ = 1
Nd

; and

Λk
dn = 1

Nd−1

∑
k′ ηk′Ck′

d,¬n is the discriminant function
value without word n. We can see that the first term
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is from the LDA model for observed word counts and
the second term is from the supervised signal y.

For λ: Finally, the conditional distribution of the aug-
mented variables λ is

q(λd|Z,η) ∝ 1√
2πλd

exp
(
− (λd + cζd)

2

2λd

)
∝ 1√

2πλd
exp

(
− c2ζ2d

2λd
− λd

2

)
= GIG

(
λd;

1

2
, 1, c2ζ2d

)
,

where GIG(x; p, a, b) = C(p, a, b)xp−1 exp(− 1
2 (

b
x+ax))

is a generalized inverse Gaussian distribu-
tion (Devroye, 1986) and C(p, a, b) is a normalization
constant. Therefore, we can derive that λ−1

d follows
an inverse Gaussian distribution

p(λ−1
d |Z,η) = IG

(
λ−1
d ;

1

c|ζd|
, 1
)
, (13)

where IG(x; a, b) =
√

b
2πx3 exp(− b(x−a)2

2a2x ) for a > 0

and b > 0.

With the above conditional distributions, we can con-
struct a Markov chain which iteratively draws samples
of η using Eq. (11), Z using Eq. (12) and λ using Eq.
(13), with an initial condition. To sample from an in-
verse Gaussian distribution, we apply the transforma-
tion method with multiple roots (Michael et al., 1976).
In our experiments, we initially set λ = 1 and random-
ly draw Z from a uniform distribution. In training, we
run this Markov chain to finish the burn-in stage with
M iterations. Then, we draw a sample η̂ as the Gibbs
classifier to make predictions on testing data.

3.4. Prediction

To apply the Gibbs classifier η̂, we need to infer
the topic assignments for testing document. We take
the approach in (Zhu et al., 2012; Jiang et al., 2012),
which uses a point estimate of topics Φ from training
data and makes prediction based on them. Specifically,
we use the MAP estimate Φ̂ to replace the probability
distribution p(Φ). For the collapsed Gibbs sampler, an

estimate of Φ̂ using the samples is ϕ̂kt ∝ Ct
k+βt. Then,

given a testing document w, we infer its latent compo-
nents z using Φ̂ as p(zkn = 1|z¬n) ∝ ϕ̂kwn

(Ck
¬n + αk),

where Ck
¬n is the times that the terms in this document

w assigned to topic k with the n-th term excluded.

3.5. Gibbs MedLDA Regression Model

Before ending this section, we briefly discuss how to
generalize the above ideas to develop a regression mod-
el, where the response variable Y takes real values.

Specifically, the Gibbs MedLDA regression model has
the same LDA model to describe input words and a
Gibbs regression model for the response variable. If
a sample of the topic assignments Z and the predic-
tion model η is drawn from the posterior distribution
q(η,Z), we define the prediction rule as ŷ = η⊤z.
One widely used margin-based loss measure is the ϵ-
insensitive loss Rϵ(η,Z) =

∑
d max(0, |∆d| − ϵ) for

support vector regression (Smola & Scholkopf, 2003),
where ∆d = yd −η⊤z̄d is the margin. Then, we define
the Gibbs MedLDA regression model as solving the
regularized Bayesian inference problem

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ)) + 2cRϵ(q(η,Θ,Z,Φ)),(14)

where Rϵ = Eq[Rϵ(η,Z)] =
∑

d Eq[max(0, |∆d| − ϵ)] is
the expected ϵ-insensitive loss. Similarly, we can show
that Rϵ is an upper bound of the ϵ-insensitive loss of
MedLDA’s expected prediction rule, by noting that

max(0, |x| − ϵ) = max(0, x− ϵ) + max(0,−x− ϵ). (15)

Lemma 3 We have Rϵ ≥
∑

d max(0, |Eq[∆d]| − ϵ).
Proof: By using the equality (15), we have Rϵ =∑

d(Eq[max(0,∆d − ϵ)] +Eq[max(0,−∆d − ϵ)]). Anal-
ogous to Lemma 1, we can show that Eq[max(0,∆d −
ϵ)] ≥ max(0,Eq[∆d] − ϵ) and Eq[max(0,−∆d − ϵ)] ≥
max(0,−Eq[∆d]−ϵ). Then, applying the equality (15)
again, we get the results.

We can reformulate problem (14) in the form as prob-
lem (10), with the pseudo-likelihood ϕ(yd|η, zd) =
exp(−2cmax(0, |∆d| − ϵ)). Then, we have the dual
scale of mixture representation.

Lemma 4 (Dual Scale of Mixture) For regres-
sion, the pseudo-likelihood can be expressed as

ϕ(yd|η, zd) =

∫ ∞

0

1√
2πλd

exp
(
− (λd + c(∆d − ϵ))2

2λd

)
dλd

×
∫ ∞

0

1√
2πωd

exp
(
− (ωd − c(∆d + ϵ))2

2ωd

)
dωd

Proof: By the equality (15), we have ϕ(yd|η, zd) =
exp{−2cmax(0,∆d − ϵ)} exp{−2cmax(0,−∆d − ϵ)}.
Each of the exponential terms can be formulated as a
scale mixture of Gaussians due to Lemma 2.

Then, the data augmented learning problem of the
Gibbs MedLDA regression model is

min
q(η,λ,ω,Θ,Z,Φ)

L(q(η,λ,ω,Θ,Z,Φ))−Eq[log ϕ(y,λ,ω|Z,η)]

where ϕ(y,λ,ω|Z,η) =
∏

d ϕ(yd, λd, ωd|Z,ω) and

ϕ(yd, λd, ωd|Z,η) =
1√
2πλd

exp
(
− (λd + c(∆d − ϵ))2

2λd

)
× 1√

2πωd
exp

(
− (ωd − c(∆d + ϵ))2

2ωd

)
.
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Solving the augmented problem and integrating out
(Θ,Φ), we can get the collapsed posterior distribution

q(η,λ,ω,Z) ∝ p0(η)p(W,Z|α,β)ϕ(y,λ,ω|Z,η).

Then, following similar derivations as in the classifica-
tion model, the Gibbs sampling algorithm to infer the
posterior has the following conditional distributions.

For η: again, with the isotropic Gaussian prior
p0(η) =

∏
k N (ηk; 0, ν

2), we have

q(η|Z,λ,ω) = N (η;µ,Σ), (16)

where Σ = ( 1
ν2 I + c2

∑
d ρdz̄dz̄

⊤
d )

−1, µ =

cΣ(
∑

d ψdz̄d), ρd = 1
λd

+ 1
ωd

and ψd = yd−ϵ
λd

+ yd+ϵ
ωd

.
We can easily draw a sample from a K-dimensional
multivariate Gaussian distribution. The inverse can
be robustly done using Cholesky decomposition.

For Z: We can derive the conditional distribution of
one variable zdn given others Z¬ as:

q(zkdn = 1|Z¬,η,λ,ω, wdn = t)

∝
(Ct

k,¬n + βt)(C
k
d,¬n + αk)∑

t C
t
k,¬n +

∑V
t=1 βt

exp
(
cγψdηk

− c2(
γ2ζdη

2
k

2
+ γ(1− γ)ρdηkΥ

k
dn)

)
, (17)

where γ = 1
Nd

; and Υk
dn = 1

Nd−1

∑
k′ ηk′Ck′

d,¬n is the
discriminant function value without word n. The first
term is from the LDA model for observed word counts.
The second term is from the supervised signal y.

For λ: Finally, we can derive that λ−1
d and ω−1

d

follow the inverse Gaussian distributions:

q(λ−1
d |Z,η,ω) = IG

(
λ−1
d ;

1

c|∆d − ϵ| , 1
)
, (18)

q(ω−1
d |Z,η,λ) = IG

(
ω−1
d ;

1

c|∆d + ϵ| , 1
)
. (19)

4. Experiments

We present empirical results to demonstrate the effi-
ciency and prediction performance of Gibbs MedLDA
(denoted by GibbsMedLDA) on the 20Newsgroups da-
ta set for classification and a hotel review data set for
regression. We also analyze its sensitivity to key pa-
rameters. The 20Newsgroups data set contains about
20K postings within 20 groups. We follow the same
setting as in (Zhu et al., 2012) and remove a standard
list of stop words for both binary and multi-class classi-
fication. For all the experiments, we use the standard
normal prior p0(η) (i.e., ν2 = 1) and the symmetric
Dirichlet priors α = α

K1, β = 0.01 × 1, where 1 is a
vector with all entries being 1. For each setting, we re-
port the average performance and standard deviation
with five randomly initialized runs. All the experi-
ments are done on a standard desktop computer.
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Figure 1. Classification accuracy, training time (in log-
scale) and testing time (in linear scale) on the 20News-
groups binary classification data set.

4.1. Binary classification

The binary classification is to distinguish postings of
the newsgroup alt.atheism and postings of the group
talk.religion.misc. The training set contains 856 doc-
uments, and the test set contains 569 documents. We
compare Gibbs MedLDA with the MedLDA model
that uses variational methods (denoted by vMedL-
DA) (Zhu et al., 2012) and the MedLDA that uses col-
lapsed Gibbs sampling algorithms (denoted by gMedL-
DA) (Jiang et al., 2012). We also include the unsu-
pervised LDA using collapsed Gibbs sampling as a
baseline, denoted by GibbsLDA. For GibbsLDA, we
learn a binary linear SVM on its topic representa-
tions using SVMLight (Joachims, 1999). The results
of other supervised topic models, such as sLDA and
DiscLDA (Lacoste-Jullien et al., 2009), were report-
ed in (Zhu et al., 2012). For Gibbs MedLDA, we set
α = 1, ℓ = 164 and M = 10. As we shall see, Gibbs
MedLDA is insensitive to α, ℓ and M in a wide range.
Although tuning c (e.g., via cross-validation) can pro-
duce slightly better results, we fix c = 1 for simplicity.

Fig. 1 shows the accuracy, training time, and testing
time of different methods with different numbers of
topics. We can see that by minimizing an expected
hinge-loss and not making any restricting assumptions
on the posterior distributions, GibbsMedLDA achieves
higher accuracy than other max-margin topic models,
which make some restricting assumptions. Similarly,
as gMedLDA makes a weaker mean-field assumption,
it achieves slightly higher accuracy than vMedLDA,
which assumes that the posterior distribution is fully
factorized. For the training time, GibbsMedLDA is
about two orders of magnitudes faster than vMedL-
DA, and about one order of magnitude faster than
gMedLDA. This is partly because both vMedLDA and
gMedLDA need to solve multiple SVM problems. For
the testing time, GibbsMedLDA is comparable with
gMedLDA and the unsupervised GibbsLDA, but much
faster than the variational algorithm used by vMedL-
DA, especially when K is large.
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Figure 2. Predictive R2, training time and testing time on
the hotel review data set.

4.2. Regression

We use the hotel review data set (Zhu & Xing, 2010)
built by randomly crawling hotel reviews from the Tri-
pAdvisor website where each review is associated with
a global rating score ranging from 1 to 5. In these
experiments, we focus on predicting the global rating
scores for reviews using the bag-of-words features on-
ly, with a vocabulary of 12,000 terms. All the reviews
have character lengths between 1500 and 6000. The
data set consists of 5,000 reviews, with 1000 reviews
per rating. The data set is uniformly partitioned in-
to training and testing sets. We compare the Gibbs
MedLDA regression model with the MedLDA regres-
sion model that uses variational inference and super-
vised LDA (sLDA) which also uses variational infer-
ence. For Gibbs MedLDA and vMedLDA, the preci-
sion is set at ϵ = 1e−3 and c is selected via 5 fold cross-
validation during training. Again, we set the Dirichlet
parameter α = 1 and the number of burn-in M = 10.

Fig. 2 shows the predictive R2 (Blei & McAuliffe,
2007) of different methods. We can see that Gibb-
sMedLDA achieves comparable prediction perfor-
mance with vMedLDA, which is better than sLDA.
Note that vMedLDA uses a full likelihood model for
both words and response variables, while GibbsMedL-
DA uses a simpler likelihood model for words only. For
train time, GibbsMedLDA is about two orders of mag-
nitudes faster than vMedLDA (as well as sLDA), again
due to the fact that GibbsMedLDA doesn’t need to
solve multiple SVM problems. For testing time, Gibb-
sMedLDA is also much faster than vMedLDA and sL-
DA, especially when the number of topics is large.

4.3. More discussions

4.3.1. Multi-class classification

We perform multi-class classification on the 20News-
groups data with all 20 categories. The test set con-
sists of 7,505 documents, and the training set consists
of 11,269 documents. Again, since GibbsMedLDA is
insensitive to α and ℓ, we set α = 1 and ℓ = 64. We
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Figure 3. Classification accuracy and training time on the
whole 20Newsgroups data set.

also fix c = 1 for simplicity. The number of burn-in
iterations is set as M = 20, which is sufficiently large,
as we shall see.

Various methods exist to apply binary classifiers to do
multi-class classification, including the popular “one-
vs-all” and “one-vs-one” strategies. Here we choose
the “one-vs-all” strategy, which has been shown effec-
tive (Rifkin & Klautau, 2004), to provide some prelim-
inary analysis. Fig. 3 shows the classification accuracy
and training time, where GibbsMedLDA builds 20 bi-
nary GibbsMedLDA classifiers. Since there is no cou-
pling among these 20 binary classifiers, we can learn
them in parallel, which we denote by pGibbsMedLDA.
We can see a clear improvement on the classification
accuracy, which may be due to the different strategies
on building the multi-class classifiers3. However, giv-
en the performance gain on the binary classification
task, we believe that the Gibbs sampling algorithm
without any restricting factorization assumptions is
another factor leading to the improved performance.
For training time, GibbsMedLDA takes slightly less
time than the variational MedLDA as well as gMedL-
DA. But if we train the multiple classifiers in paral-
lel, we can save a lot of training time. These results
are promising since it is now not uncommon to have a
desktop computer with multiple processors or a cluster
with tens or hundreds of computing nodes.

4.3.2. Sensitivity analysis

Burn-In: Fig. 4 shows the performance of Gibb-
sMedLDA with different numbers of burn-in samples
for the binary classification task. When M = 0, the
model is in fact random. We can see that the classi-
fication performance increases very fast and converges
to the stable optimum with 5 to 10 burn-in steps. The
training time increases about linearly in general when
using more burn-in steps. Moreover, the training time
increases linearly as K increases. In the previous ex-
periments, we have chosen M = 10.

3MedLDA learns multi-class SVM (Zhu et al., 2012).
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Figure 4. (L) accuracy and (R) training time of Gibb-
sMedLDA with different numbers of burn-in steps for bi-
nary classification.
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Figure 5. (L) accuracy, (M) training time of GibbsMedL-
DA and (R) training time of pGibbsMedLDA with different
numbers of burn-in steps for multi-class classification.

Fig. 5 shows the performance of GibbsMedLDA for
multi-class classification with different numbers of
burn-in steps. We can see when the number of burn-
in steps is larger than 20, the performance is quite
stable. Again, the training time grows about linear-
ly as the number of burn-in steps increases. Even if
we use 40 or 60 steps of burn-in, the training time is
still competitive, compared with the variational MedL-
DA, especially considering that GibbsMedLDA can be
naively parallelized by learning different binary classi-
fiers simultaneously.

Dirichlet prior α: Fig. 6 shows the classification per-
formance of GibbsMedLDA on the binary task with
different α values. For the three different topic num-
bers, we can see that the performance is quite stable
in a wide range of α values, e.g., from 0.1 to 10. We
can also see that it generally needs a larger α in order
to get the best results when K becomes larger. This
is mainly because a large K tends to produce sparse
topic representations and an appropriately large α is
needed to smooth the representations, as the effective
Dirichlet prior is αk = α/K.

Loss penalty ℓ: Fig. 7 shows the classification per-
formance of GibbsMedLDA on the binary classification
task with different ℓ values. Again, we can see that in
a wide range, e.g., from 25 to 625, the performance
is quite stable for all the three different K values. In
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Figure 6. Classification accuracy of GibbsMedLDA on the
binary classification data set with different α values.
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Figure 7. Classification accuracy of GibbsMedLDA on the
binary classification data set with different ℓ values.

the above experiments, we set ℓ = 164. For the multi-
class classification task, we have similar observations,
and we set ℓ = 64 in the previous experiments.

5. Conclusions and Discussions

We presented Gibbs MedLDA, a new formulation of
max-margin supervised topic models, which minimizes
an expected margin loss. By using the idea of da-
ta augmentation, we presented simple and highly ef-
ficient “augment-and-collapse” Gibbs sampling algo-
rithms without making any restricting assumptions on
posterior distributions. Empirical results on real data
demonstrate significant improvements over the exist-
ing max-margin topic models.

The new data augmentation formulation without any
need to solve constrained subproblems has shown great
promise on improving the time efficiency of max-
margin topic models. For future work, we are interest-
ed in developing highly scalable sampling algorithms
(e.g., using a distributed architecture) (Newman et al.,
2009; Smola & Narayanamurthy, 2010) to deal with
large scale data sets.
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