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Direct Visual Servoing: Vision-Based Estimation and
Control Using Only Nonmetric Information

Geraldo Silveira and Ezio Malis

Abstract—This paper addresses the problem of stabilizing a robot at
a pose specified via a reference image. Specifically, this paper focuses
on six degrees-of-freedom visual servoing techniques that require neither
metric information of the observed object nor precise camera and/or robot
calibration parameters. Not requiring them improves the flexibility and ro-
bustness of servoing tasks. However, existing techniques within the focused
class need prior knowledge of the object shape and/or of the camera mo-
tion. We present a new visual servoing technique that requires none of the
aforementioned information. The proposed technique directly exploits 1)
the projective parameters that relate the current image with the reference
one and 2) the pixel intensities to obtain these parameters. The level of
versatility and accuracy of servoing tasks are, thus, further improved. We
also show that the proposed nonmetric scheme allows for path planning.
In this way, the domain of convergence is greatly enlarged as well. The-
oretical proofs and experimental results demonstrate that visual servoing
can, indeed, be highly accurate and robust, despite unknown objects and
imaging conditions. This naturally encompasses the cases of color images
and illumination changes.

Index Terms—Computer vision, image registration, intensity-based
methods, lighting variations, projective information, vision-based control.

I. INTRODUCTION

Visual servoing consists in controlling the motion of a robot from the
feedback of images. This paper addresses the problem of stabilizing all
six degrees of freedom (DOF) of a holonomic robot at a pose defined
by means of a reference image. Of course, the reference image must
fully constrain all of its 6 DOF to make that possible. This framework
is usually referred to as teach by showing in the visual servoing com-
munity [1]. An intuitive strategy to solve that problem is to consider
the vision sensor as a 3-D sensor. From the provided pose, standard
feedback control laws can be used to perform the stabilization. This
approach is called pose-based (or more commonly, position-based) vi-
sual servoing [2]. This scheme can be applied even to nonholonomic
and underactuated robots. On the other hand, it requires very precise
camera and robot calibration parameters, as well as the metric model
of the observed object. If this metric model is not available, then the
monocular localization problem cannot be solved accurately. Another
classical solution to that vision-based stabilization problem is to define
the control error in the image space [2]. This approach is commonly
called image-based visual servoing. This scheme is remarkably more
robust to errors in the camera and robot calibration parameters. Nev-
ertheless, it still requires minimal metric knowledge of the object (a
coarse depth distribution) to provide a stabilizing control law [3]. The
domain of stability is enlarged by the hybrid visual servoing strategy
proposed in [4]. This strategy is hybrid in the sense that part of the
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control error is defined in the image space and part of it is expressed
in the Euclidean space. However, it still needs a metric estimate of the
planar object (a coarse normal vector, which is a parameterization of its
depths) to decide between the two admissible solutions of the required
homography decomposition [5].

Specifically, this paper focuses on visual servoing techniques that do
not require metric information of the observed target and can control all
6 DOF of a robot. The fact of not requiring metric information improves
the flexibility and robustness of visual servoing tasks [6]. Indeed, re-
cent studies in the domain of biological vision have suggested that
the brain processes visual information nonmetrically [6]. Surprisingly,
only few works have been conducted on the full 6 DOF nonmetric vi-
sual servoing. Moreover, these existing works require prior knowledge
of the object shape and/or of the camera motion. A first set of examples
consists of the methods solely based on the fundamental or essential
matrix (see, e.g., [7]). These methods require both nonplanar objects
and a sufficient amount of translation to avoid the degeneracies. They
are, hence, problematic near the convergence of the visual servo. An-
other set of examples are the strategies solely based on the homography
matrix (see, e.g., [8]). These techniques are, thus, designed for planar
objects and/or pure rotational motions.

In this paper, we present a new 6-DOF visual servoing technique
that requires no metric information of the object, regardless of its
shape and of the camera motion. In this way, system versatility is
further improved. The proposed approach generalizes [8] in the sense
that nonplanar objects are now also encompassed. Furthermore, the
proposed nonmetric control error is isomorphic to the camera pose
around the equilibrium for the largest possible domain of rotations.
This property does not hold in [8], e.g., for a camera rotation of 180◦.
Isomorphism is an extremely important property of systems not defined
in the metric space. Indeed, it ensures that the nonmetric control error
(and control law) is null if and only if the camera pose corresponds
to the desired one. Another strength of the proposed approach is that
it allows for path planning, which is not the case in [8]. (Of course,
that path is also defined in a nonmetric space.) This represents another
improvement since path planning can significantly enlarge the domain
of convergence of servoing tasks [9].

The proposed control error is constructed from the projective pa-
rameters that geometrically relate the current image with the reference
one. The estimation procedure to obtain these parameters exploits the
pixel intensities, instead of image features (e.g., points, lines, etc.).
This can be performed via direct image registration methods (see,
e.g., [10]). Existing visual servoing techniques that exploit the pixel
intensities (see, e.g., [11] and [12]) do not fall into the class con-
sidered in this paper. Indeed, the work in [11] cannot control all 6
DOF of a robot, and the work in [12] requires metric information.
Although feature-based techniques could also be applied to estimate
those projective parameters, we argue that intensity-based methods
are valuable in the context of visual servoing. First of all, higher ac-
curacy can be achieved since much more infomation is exploited. In
fact, even image regions where no feature exists can be used. Addi-
tionally, image features getting in and out of the field of view can
destabilize the control system more easily. This is due to eventual
discontinuities, singularities, and even loss of all tracked features.
Hence, the fact of using more visual information leads not only to
higher accuracy but to more stable servoing techniques as well. An-
other advantage is that, within direct methods of estimation, the ro-
bustness to general illumination changes can be achieved, even in color
images [10].

The term “direct” within the proposed technique are, thus, twofold.
On the estimation aspect, it highlights the operation at the signal level,
without intermediate measures; on the control aspect, it emphasizes that
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Fig. 1. Geometry of two views of a nonplanar object. Let the dominant (virtual)
plane of this object be defined by Φ. The projective parallax ρ∗ of the 3-D point
m∗ with respect to Φ is proportional to its distance d(m∗, Φ) and is inversely
proportional to its depth z∗. Hence, the projective parallax ρ∗Φ of the 3-D point
m∗

Φ (this object point lies on Φ) relatively to Φ is ρ∗Φ = 0.

only nonmetric quantities are used, without decompositions or priors.
That space is closer to the one where the task is specified (i.e., an
image). This paper is built on the theoretical material presented in [13]
and [14], adding an experimental validation with a real robot that was
not performed in previous works. In addition to the theoretical results,
various experiments have been conducted using objects of different
shapes, under large initial displacements, large errors in the camera
intrinsic parameters, as well as under varying illumination conditions.

II. PRELIMINARIES

Consider a 3-D point m∗ = [x∗, y∗, z∗]� defined with respect to
the reference frame F∗. This point is projected in the n-channel
reference image I∗, n ≥ 1, as a pixel with homogeneous coordi-
nates p∗ = [u∗, v∗, 1]� ∈ P

2 (see Fig. 1). Of course, n = 1 refers to
a grayscale image. The intensity value of this pixel is represented
by I∗(p∗). Let the camera be displaced from F∗ by a translation
t ∈ R

3 and a rotation R = exp([w]×) ∈ SO(3), where the vector
w = θu ∈ R

3 contains the angle of rotation θ and the unit axis of rota-
tion u. The notations [w]× and vex([w]×) represent, respectively, the
skew-symmetric matrix associated with the vector w = [w1 , w2 , w3 ]�

and its inverse operator, i.e.,

[w]× =

[
0 −w3 w2

w3 0 −w1

−w2 w1 0

]
, vex([w]×) =

[
w1

w2

w3

]
, (1)

where the latter extracts the components of that vector from the skew-
symmetric matrix. Given the displacement of the camera from F∗,
let the current frame be denoted as F . The coordinates of that same
3-D point m∗ is expressed in the basis of F as m = [x, y, z]� using
the equation of rigid-body motion. From this new pose, the current
image I is acquired. That 3-D point is projected in I as the pixel
p = [u, v, 1]� ∈ P

2 , whose current intensity value is represented by
I(p). Finally, let ‖v‖ and v′, respectively, denote the Euclidean norm
and a normalized or transformed version of the original variable v.

A. Two-View Geometry

The relation between corresponding points in a pair of images (see
Fig. 1) can be formally described in different geometries [5]. This
section recalls the two most important ones to this paper.

1) Euclidean Description: Euclidean geometry relates correspond-
ing pixel coordinates p ↔ p∗ through

p ∝ KRK−1 p∗ + (z∗)−1Kt, (2)

from the equation of rigid-body motion, the Thales’ theorem, and the
perspective camera model with intrinsic parameters K ∈ R

3×3 (fo-
cal lengths αu , αv > 0, skew, and principal point). The symbol “∝”
denotes proportionality up to a nonzero scale factor.

2) Projective Description: Projective geometry is an extension of
Euclidean geometry, and naturally includes the perspective projection
performed by a camera [5]. In this case, the general relation between
corresponding pixel coordinates p ↔ p∗ is given by

p ∝ G p∗ + ρ∗e, (3)

where G ∈ SL(3) is a projective homography relative to a dominant
(virtual) plane, e ∈ R

3 denotes the epipole (strictly speaking, e ∈ P
2 ),

and ρ∗ ∈ R is the projective parallax of the 3-D point whose projection
in I∗ is p∗, i.e., of m∗, relatively to that virtual plane. This parallax is
proportional to the distance of m∗ to that virtual plane and is inversely
proportional to the depth of this 3-D point. Hence, ρ∗ = 0 if and only
if the 3-D point m∗ lies on the virtual plane. Of course, if the object is
planar, then that plane corresponds to the object itself and all of its 3-D
points have zero parallax. A procedure to estimate these parameters is
presented in Section IV.

B. Two Visual Servoing Techniques

This section recalls two visual servoing techniques that have greatly
inspired the proposed one.

1) Pose-Based Visual Servoing: This technique aims to stabilize
the robot pose (R, t) that is reconstructed from images. To solve the
visual localization problem, one needs some knowledge of the metric
model of the object, as well as of the camera and robot calibration
parameters. The accuracy of this information is crucial to the accuracy
of the servoing task. Many solutions to this reconstruction problem
have been presented in the literature [5].

Definition 2.1: A pose-based control error ε̄ ∈ R
6 can be defined as

ε̄ =

[
ε̄υ

ε̄ω

]
=

[
t

θu

]
, (4)

where ε̄ω can be computed from the rotation matrix R via

r =
1
2

vex
(
R − R�), (5)

θ =

{
arcsin(‖r‖), if tr(R) ≥ 1,
π − arcsin(‖r‖), otherwise,

(6)

u =
r
‖r‖ , (7)

where θ is the angle of rotation, u is the unit axis of rotation, and
the function tr(·) denotes the trace of a matrix. If ‖r‖ = 0, then u
is not determined and, therefore, can be chosen arbitrarily (e.g., u =
[0, 0, 1]�). The angle-axis representation in (4) is important to this
paper due to its link to the Lie algebra [15].

Having constructed the control error (4), standard feedback control
strategies can, then, be applied to perform the stabilization.

2) Homography-Based Visual Servoing: The visual servoing tech-
nique proposed in [8] aims to control the motion of a camera with
respect to a planar object. Let this plane be defined by Π, whose metric
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information is not required. The method is, in fact, based on the pro-
jective homography GΠ ∈ SL(3) induced by this plane between two
views. It first performs a normalization step

HΠ = K−1 GΠ K, m∗′
Π = K−1 p∗

Π , (8)

where p∗
Π ∈ P

2 is a chosen image point (not necessarily an interest
point) of this object, also called control point.

Definition 2.2: The plane-based nonmetric control error εΠ ∈ R
6

is defined as

εΠ =

[
ευ Π

εω Π

]
=

[
(HΠ − I)m∗′

Π
rΠ

]
, (9)

with
rΠ = vex

(
HΠ − H�

Π

)
. (10)

The control error (9) is proven in [8] to be locally isomorphic to the
camera pose at the equilibrium, within a limited domain of rotations.
This domain is limited since, e.g., both θ = 0 and θ = π are mapped to
by εω Π = rΠ = 0. Local asymptotic stability is proven to be ensured
via a proportional control law using (9).

Remark 2.1: It is easy to verify that GΠ is a particular case of the
general morphism G in (3). Indeed, for planar objects and/or pure
rotations between views, (3) is simplified using ρ∗e = 0.

III. DIRECT VISUAL SERVOING: CONTROL ASPECTS

This section presents a new visual servoing technique to stabilize a
robot with respect to a rigid object of unknown shape. The main idea
is to extend the plane-based nonmetric control error (9) to encompass
nonplanar objects, while having a structure as closely as possible to the
pose-based control error (4). In this way, we combine the advantages
of both strategies, namely, the nonmetric control of the object in the
image, while searching for an optimal camera trajectory.

A. Control Error and Some Properties

The proposed control error uses the set of projective information
g = {G, e, ρ∗} that geometrically relates the current image with the
reference one. This relation is given in (3), and the procedure to estimate
that information will be described in Section IV. A first step to construct
that error is to perform the following normalization:

H = K−1 G K, e′ = K−1 e, m∗′ = K−1 p∗. (11)

Details on how to choose the control point p∗ will be given in Sec-
tion III-B. Let us first provide some important definitions.

Definition 3.1: The proposed nonmetric control error ε ∈ R
6 is

defined as

ε =

[
ευ

εω

]
=

[
(H − I)m∗′ + ρ∗e′

ϑμ

]
, (12)

where εω can be computed from the homography matrix H via

r =
1
2

vex
(
H − H�), (13)

ϑ =

{
real
(
arcsin(‖r‖)

)
, if tr(H) ≥ 1,

π − real
(
arcsin(‖r‖)

)
, otherwise,

(14)

μ =
r

‖r‖ , (15)

where μ can be viewed as a unit “projective axis of rotation,” ϑ can
be viewed as a “projective angle of rotation,” and real(·) is used since
ϑ is a real-valued scalar. If ‖r‖ = 0, then μ is not determined and,
therefore, can be chosen arbitrarily (e.g., μ = [0, 0, 1]�).

Let us state two remarks regarding this control error as follows.
Remark 3.1: It is important to note that the control error (12) is

constructed without requiring any metric information of the observed
object, regardless of its shape and of the camera motion.

Remark 3.2: The proposed nonmetric control error (12) could be
modified in several ways. For example, a decoupled translation error
could be devised by using the epipole solely. The rotational error could
also be defined differently. In other terms, a modified version ε′ ∈ R

6

of (12) could simply be defined as

ε′ =

[
ε′

υ

ε′
ω

]
=

[
e′

r′

]
, (16)

with
r′ = vex

(
H − H�). (17)

The translation error in (16) is decoupled from the rotation since e′ =
K−1e ∝ K−1K t ∝ t. However, if the object is planar, then one is
not sure if the recovered epipole corresponds to the correct solution
because, in this case, there exist two admissible ones [5]. Furthermore,
the coupling present in (12) is not a major concern to the stability of the
system because a path planning can be performed (see Section III-C).
As for the modified ε′

ω in (16), which is equivalent to setting ϑ = 2‖r‖,
some improvements are achieved through εω in (12) as will be formally
stated in Corollary 3.1. In particular, it considers the largest possible
domain of rotations.

Before announcing an important property of the proposed control
error (local isomorphism in Theorem 3.1), let us state how this error
is related to the camera pose. This relation is only used in theoretical
demonstrations, i.e., it is not used for servoing the system.

Lemma 3.1 (Control error and camera pose): The proposed non-
metric control error (12) can be expressed as a function of the camera
pose (i.e., of the rotation R ∈ SO(3), and of the translation t ∈ R

3 )
between the current frame and the reference one through

ευ =
1
z∗

(
(R − I)m∗ + t

)
, (18)

and εω through

r = sin(θ)u +
1
2
[q∗′]×t, (19)

where the vector q∗′ ∈ R
3 defines the dominant plane of the object.

Proof: The proof is developed in [16]. �
Theorem 3.1 (Local isomorphism): The proposed nonmetric control

error (12) is locally isomorphic to the camera pose at the equilibrium
ε = 0. Moreover, this holds around the equilibrium for the largest
possible domain of rotations, since only θ = 0 is mapped to by εω = 0.

Proof: The proof is presented in [16]. �
Corollary 3.1 (Generality and improvements): The proposed non-

metric control error (12) is a generalization of (9) to encompass nonpla-
nar objects and unknown motion between views. Indeed, (12) does not
assume that ρ∗e = 0, as in (9). Moreover, the proposed one improves
the convergence properties of the servoing as well as encompasses the
control error presented in [4].

B. Control Law and Stability Analysis

Consider a camera-mounted holonomic robot observing a motion-
less object of unknown shape.

Definition 3.2: Let v = [υ�, ω�]� ∈ R
6 represent, respectively, the

translational and rotational velocities of the camera. The proposed
nonmetric control law

v = Λ ε, (20)



IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 4, AUGUST 2012 977

with control gain

Λ = diag(λυ I,λω I) =

[
λυ I 0
0 λω I

]
, λυ ,λω > 0, (21)

uses the control error ε = [ε�
υ, ε

�
ω ]� in (12) to compute the input signals

(i.e., the camera velocities).
Let us state two remarks regarding this control law as follows.
Remark 3.3: It is important to note that the control law (20) is

constructed without requiring any metric information of the observed
object, regardless of its shape and of the camera motion.

Remark 3.4: The control law (20) has a positive sign. This is due
to the definition of the control error (12), which exploits the geometric
set of parameters g = {G, e, ρ∗}. This set defines a mapping from F∗

to F and not the opposite. See (3).
The stability analysis is performed in the sequel.
Theorem 3.2 (Local stability): The proposed nonmetric control law

(20) ensures local asymptotic stability of the closed-loop system pro-
vided that the control point p∗ ∈ P

2 (11) is chosen such that its parallax
ρ∗ ∈ R is sufficiently small.

Proof: The proof is presented in [16]. �
Corollary 3.2 (Parallax condition): There always exists a control

point p∗ ∈ P
2 (11) with zero parallax (and, thus, can be chosen as the

control point). This is due to the fact that, by definition, the dominant
plane always crosses the object. Therefore, the closed-loop system is
always locally asymptotically stable.

Although the control point can be selected such that its parallax is
zero, for robustness reasons, it should be chosen as closely as possible to
the center of the object. This reduces the possibility of the object getting
out of the field of view due to calibration errors. Indeed, controlling
in the image some object’s part represents an attractive characteristic
of the proposed scheme. Visual servoing techniques that perform this
control are known to be more robust to camera and robot calibration
errors [1]. An even higher degree of robustness is obtained if path
planning is also performed [9].

C. Path Planning

There are two main motivations to perform path planning within
visual servoing: 1) to improve its robustness to calibration errors and
2) to deal with large camera displacements. These are both achieved
because a large control error is divided into smaller ones, which means
always servoing around the equilibrium. Thus, the task can be executed
inside the proven domain of stability. This section proposes a straight-
forward strategy for path planning using the direct visual servoing. To
this end, instead of regulating ε(t) → 0, an appropriate path tracking
ε(t) → ε∗(t) is performed.

Definition 3.3: Path tracking is accomplished by regulating the time-
varying nonmetric control error

εr (t) = ε(t) − ε∗(t), ∀t ∈ [0, T ], (22)

given the control error (12) and a time-varying desired signal

t �→ ε∗(t) = [ε∗�
υ (t), ε∗�

ω (t)]�. (23)

Let us state two remarks regarding this control error as follows.
Remark 3.5: It is important to note that the time-varying control

error (22) can be constructed without requiring any metric information
of the object, regardless of its shape and of the camera motion.

Remark 3.6: The time-varying control error (22) presents interesting
characteristics due to the properties of the control error (12): 1) only
one image point has its trajectory planned. Therefore, physically valid
camera situations are always specified; 2) the “projective axis-angle”

parameterization already provides for a smooth trajectory. Hence, there
is no need for postprocessing (e.g., interpolation) the divided path
to obtain C2 trajectories; 3) given the local isomorphism, there are
no singularities along the entire planned path if its division is made
sufficiently high.

Two examples of desired paths are presented in the following.
Case 3.1 (Linear path): A first example of interest consists in spec-

ifying the time-varying desired signal (23) as a linear path such that
ε∗(0) = ε(0) and ε∗(T ) = 0, i.e.,

ε∗(t) = ε∗(0) +
(
ε∗(T ) − ε∗(0)

) t

T
= ε∗(0)

(
1 − t

T

)
. (24)

This case is of special interest to the translational part of (23), i.e., to
ε∗

υ (t). Indeed, the trajectory of the control point in the image is, thus,
specified as a straight line.

Case 3.2 (Geodesic path): A second example of desired path is given
here. It is of special interest to the rotational part of (23), i.e., to ε∗

ω (t).
From the results of the Lemma 3.1, we have that

εω = ϑμ → θu = ε̄ω as t → 0. (25)

In other terms, if t = 0, then geodesic rotations will be induced. This
motivates us to replan the desired signal for the rotational part of (24)
as the camera approaches the goal. To this end, its rotational part can
be slightly changed to

ε∗
ω (t) = εω (t)

(
1 − t

T

)
. (26)

A stabilizing time-varying control law is defined next.
Definition 3.4: In order to regulate the time-varying control error

(22) to zero, the control law (20) is transformed into the time-varying
nonmetric control law

v = Λ(t) εr (t) +
∂ε∗(t)

∂t
, (27)

where the feed-forward term ∂ε∗(t)/∂t allows compensation of the
tracking error, and

Λ(t)=diag
(
λυ I,λω (t)I

)
=

[
λI 0
0 λ exp

(
−γ‖ευ (t)‖

)
I

]
, (28)

with λ, γ > 0, is a variable gain matrix also motivated by (25): λω (t) >
0 is small for large ‖ευ (t)‖, and λω (t) → λ as ‖ευ (t)‖ → 0.

Two remarks regarding this control law are in order.
Remark 3.7: It is important to note that the time-varying control

law (27) is constructed without requiring any metric information of the
observed object, regardless of its shape and of the camera motion.

Remark 3.8: The proof that the time-varying control law (27) en-
sures asymptotic stability of the corresponding closed-loop system is
essentially the same as in Theorem 3.2. Furthermore, the planned con-
trol error to be regulated to zero, i.e., εr (t) in (27), is usually much
smaller than the current ε(t) in (20) and (22). This means that local
operation is even more respected in the case of path planning.

IV. DIRECT VISUAL SERVOING: ESTIMATION ASPECTS

This section presents a direct image registration technique to si-
multaneously estimate the geometric and photometric parameters that
relates the current image with the reference one. The geometric param-
eters are used to construct the proposed nonmetric control error (see
Section III), whereas the photometric ones are estimated to achieve
effective robustness to general illumination changes.
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A. Photometric and Geometric Transformation Models

The general relation (3) allows us to define a geometric transforma-
tion model, which is also referred to as warping operator

w : SA(3) × R × P
2 → P

2 ; (g,p∗) �→ p = w(g,p∗), (29)

where g = {G, e, ρ∗}, and the Lie group SA(3) is homeomorphic to
SL(3) × R

3 . This geometric transformation model (29) is general in
the sense that it captures both planar and nonplanar objects, as well
as any type of camera motion. Furthermore, it is fully defined in the
projective space.

With respect to the photometric relation, the current image I can be
transformed such that the resulting I ′

h best matches the reference one
I∗ through the general model [10]

I ′
h (h, I) = S • I + β, (30)

where h = {S, β}, the set of surfaces S = [Sij ]ni,j=1 captures both
local and global lighting variations, β = [β11, β21, . . . , βn 1]� models
the per-channel shift in the ambient lighting changes and in the camera
bias, and the operator “•” represents the linear combination of the color
channels elementwise multiplied by the corresponding surface. This
photometric transformation model (30) is, thus, general in the sense
that it compensates for both global and local illumination changes,
even in color images.

B. Photogeometric Direct Image Registration

This problem consists in searching for the photogeometric param-
eters g = {G, e, ρ∗} and h = {S, β} that best transform the current
image such that each pixel intensity I(p) is matched as closely as
possible to the corresponding one in I∗(p∗). A photogeometric trans-
formation model can be defined from the model of illumination changes
(30), along with the warping model (29). More formally, the action of
this general transformation model on pixels is given by

I ′
g h (g,h,p∗) = S(p∗) • I

(
w(g,p∗)

)
+ β ≥ 0. (31)

A photogeometric direct image registration system can then be formu-
lated as the following nonlinear optimization problem:

min
g = {G , e, ρ∗

i }
h = {S, β}

1
2

∑
p ∗

i
∈T ∗

[
I ′

g h (g,h,p∗
i ) − I∗(p∗

i )
]2

, (32)

which seeks to minimize the vector of all image differences within
the reference template T ∗ ⊆ I∗. Of course, the cost function can
be different, but the sum of square differences is the most widely
used one to register images without aberrant measures (e.g., unknown
occlusions). If these measures are present, a robust function [17] (e.g.,
an M-estimator) can be considered in (32). The optimization problem
(32) can be solved by standard iterative nonlinear methods such as the
Gauss–Newton one. For an improved solution in terms of convergence
properties, see [10].

C. Initialization Issues

The estimation system (32) exploits the intensity of all pixels within
an image region of interest T ∗. Although the entire image could be
used, i.e., T ∗ = I∗, the quantity of information to be exploited strongly
depends on the available computing resources. As an example, for an
estimation of ten parameters at 30 Hz using the technique in [10],
only 30 000 pixels should be exploited if only a monocore Pentium
4 3.2 GHz is available. Indeed, in this case, that computer runs at 6
ms/iteration (i.e., ≈30 Hz using five iterations per image). Although

different strategies can be applied to select the pixels, for the sake of
simplicity, the results in Section V are obtained by exploiting all pixels
within a manually selected region of I∗ (outlined in blue). Furthermore,
the parameters estimated in the registration of I∗ with I(t) are used as
a starting point to align I∗ with I(t + Δt), where t indexes the images,
and Δt is the sampling period. Nevertheless, if there is no sufficient
overlapping of the object between images, a local minimum can be
attained. In this case, a predictor or a global minimization procedure
can be used. The former can also be applied to speed up the estimation,
whereas the latter is of special interest for the initial image due to a
possibly very large displacement between the initial and desired poses.

V. EXPERIMENTAL RESULTS

This section reports typical results from the proposed visual servo-
ing technique. The considered task consists of positioning a camera-
mounted holonomic system with respect to a rigid object, regardless
of its shape. To this end, a reference image is acquired at the refer-
ence pose. After displacing the camera to another pose, which is also
called initial one, the control objective is to stabilize it at that reference
situation. The control error and control law are both calculated at the
signal level as described in Section III, i.e., they do not use either metric
information of the object or image feature extraction. The needed pro-
jective parameters are obtained using the photogeometric direct image
registration method described in Section IV.

A. Synthetic Data

To obtain a ground truth, we constructed synthetic objects of dif-
ferent shapes. We also mapped textured images onto them to simulate
realistic situations as closely as possible. The control system is mod-
eled as a pinhole camera mounted on the end-effector of a classical
manipulator robot. The motion of the control point and the projection
of its planned path are shown in the images as blue and green marks,
respectively. The latter is typically composed of T = 100 waypoints,
and the variable gain matrix (28) uses λ = γ = 10. A challenging sce-
nario is then set up: The object is an hyperbolic paraboloid (a priori
unknown), i.e., the horse’s saddle, whose center is placed 100 cm
away from the camera; the focal lengths are set very differently
from the true ones, i.e., instead of αu = αv = 500 pixels, we set
α̂u = 900 and α̂v = 800 pixels; as well as a large initial displace-
ment (relatively to the scene depths) is carried out, i.e., a translation
of [−20.95, 21.77, −58.94] cm (norm: 66.2 cm) and a rotation of
[12.00, −9.60, 30.00]◦ (norm: 33.7◦) relatively to the reference frame.
The proposed technique successfully performs the visual servo, despite
all of these large perturbations. See Fig. 2 for the results. Final errors
less than 1 mm in translation and less than 0.1◦ in rotation are obtained.
In addition, observe that the Cartesian errors converge to zero smoothly
and are nearly decoupled. These results show that the technique 1) can
be highly accurate, 2) is robust to large errors in the camera intrinsic
parameters, 3) possesses a large domain of convergence, and 4) works
with fully nonplanar objects, despite large initial translation with re-
spect to the scene depths. See [13] and [14] for results with different
objects, varying illumination conditions, and color cameras.

B. Real Data

This section presents the servoing results using a unicycle-type mo-
bile robot. We mounted a pan-tilt camera away from its rear wheel
axle so that the mounting point is not subjected to the nonholonomic
constraint. In other terms, the resulting control system is holonomic
(see the demonstration in [18]). The location of that mounting point
relative to that axle is only roughly known. We assumed it as 8 cm away
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Fig. 2. Direct visual servoing with respect to a hyperbolic paraboloid (a priori
unknown) using a coarsely calibrated camera. Final errors less than 1 mm in
translation and less than 0.1◦ in rotation are obtained. (a) Reference image.
(b) Initial image. (c) Final image. (d) Translation velocity. (e) Rotation velocity.
(f) Translation error. (g) Rotation error.

from that axle and in the middle of it, which is of approximately 40 cm
long. The camera calibration parameters are also coarsely known. We
assumed them as α̂u = α̂v = 440 pixels, zero skew, and the principal
point in the middle of the image, which has 320×240 pixels. No path
planning is performed in this experiment and the control gains in (21)
are set to λυ = λω = 0.3. The results are shown in Fig. 3. Differently
from the synthetic case, no ground truth is available here. However, the
accuracy can be verified through the RMS error between the reference
template and the final one. In this case, it is of 9.68 levels of grayscale
(over 256), which corresponds to a termination condition for the servo-
ing of ‖ευ ‖ < 0.01. See [10] for numerous other experimental results
concerning the photogeometric aspects of the estimation. In particular,
one can observe in [10] that the robustness of the system to arbitrary
illumination changes, even in color images.

VI. CONCLUSION

This paper has proposed a new approach to visual servoing all 6 DOF
of a holonomic robot, given a reference image. The approach does not
require any metric information of the observed object, regardless of its
shape and of the camera motion. In this way, system versatility and
robustness to errors in the calibration parameters are both achieved.
The used projective parameters are obtained via a photogeometric reg-
istration method that can exploit all image information, even from areas
where no image feature exists. Therefore, high levels of accuracy and
robustness to illumination changes, even in color images, can both be
attained. Finally, the proposed nonmetric control error allows for path
planning. Hence, a large domain of convergence is also obtained.

Fig. 3. Direct visual servoing using a camera-mounted robot. Both camera
and robot are only coarsely calibrated. The RMS error between the reference
template and the final one is of 9.68 levels of grayscale (over 256). (a) Reference
image. (b) Initial image. (c) Final image. (d) Camera velocities. (d) Robot
velocities. (f) Control error. (g) Norm of the control error.

In spite of all these improvements, several problems and analysis
issues still remain open. A possible analysis to be conducted within
the proposed strategy concerns its robustness to errors in the camera
intrinsic parameters. Although a large degree of robustness has been ob-
served in the experiments, no theoretical analysis has been performed.
Additionally, a promising research direction concerns the generaliza-
tion of the proposed nonmetric technique to critical nonlinear systems,
such as nonholonomic and underactuated robots. This will certainly be
an active topic of research in the near future.
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An Alternative to the Mahalanobis Distance for
Determining Optimal Correspondences in Data Association
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Abstract—The most common criteria to determine data association rely
on minimizing the squared Mahalanobis distance (SMD) between obser-
vations and predictions. We hold that the SMD is just a heuristic, while
the alternative matching likelihood is the optimal statistic to be maximized.
Thorough experiments undoubtedly confirm this idea, with false positive
reductions of up to 16%.

Index Terms—Data association (DA), simultaneous localization and
mapping (SLAM).
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I. INTRODUCTION

The problem of simultaneous localization and mapping (SLAM)
has been one of the most studied topics in mobile robotics during the
past decade [1]–[4]. Maps of the robot environment learned by SLAM
can be roughly classified as either continuous representations (such as
occupancy grid maps [5], elevation maps [6], or gas concentration maps
[7]) or discrete (object-based) representations, comprised of a variable
number of natural or artificial landmarks present in the environment.
In this paper, we focus on this latter approach. Using a map of discrete
elements has some advantages such as the relative efficiency of graph
SLAM [8] and extended Kalman filter (EKF)-like [9] algorithms in
comparison with alternatives for continuous maps—e.g., grid mapping
with particle filters [10].

However, discrete maps introduce two hurdles: First, in most cases,
sensors do not directly detect landmarks; thus, an additional detection
step must be introduced whose failure would severely degrade the over-
all mapping performance. Second, once a set of observed landmarks is
available from the sensor, they must be paired with those already in the
map. This is the data-association (DA) problem, which is the central
concern of this paper.

The DA problem can be stated as follows: At some time step t,
and given the vector with N landmark observations zt , compute the
N -length association vector nt which states to which map landmark
does each observation correspond (or whether it is a new landmark not
observed earlier). Each landmark observation is a point in the observa-
tion space whose dimensionality depends on the specific problem, e.g.,
2-D in planar range-bearing SLAM with point features [4], [11] and in
monocular SLAM [12], or 1-D in range-only SLAM [13], [14]. Each
of these observation points must be paired with either one or none of
a set of predictions or expected observation for each known landmark
in the map. Given that the sensor model is stochastic and both the ve-
hicle pose and the map are represented as probability densities, these
predictions are probability distributions as well—typically, Gaussians.

As we will discuss in Section II, the most popular methods to solve
DA are the nearest neighbor (NN) [4] and the joint-compatibility branch
and bound (JCBB) [11] algorithms. As described in the literature, these
methods aim to establish the most likely pairings by minimizing the
squared Mahalanobis distance (SMD) between the observations and
their associated predictions.

The central claim of this paper is that minimizing the SMD does not
always lead to the most likely pairings, as can be easily demonstrated.
Consider the probability mass function over all the possible associations
nt for a time step t, given the knowledge about the joint vehicle-
map state vector st and the latest observation zt , which follows the
conditional distribution P (nt |st , zt ). By definition, the most likely
set of associations is the value of nt that maximizes this distribution.
Applying the Bayes rule over the observation zt

(1)

using the fact that the a priori distribution of the associations not con-
ditioned to any observation must be uniform, leading to an irrelevant
constant term η. A natural and expected consequence of the aforemen-
tioned equation is that optimal correspondences are those that “best
explain” the observations.

If we let N (x; μ,Σ) denote the evaluation at x of the probability
density function of a multivariate Gaussian with mean μ and covariance
matrix Σ, the observation likelihood in EKF-based or graph SLAM can
be denoted as

p(zt |st ,nt ) = N (zt ; h(st ,nt ),S(nt )) (2)
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