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Abstract

An articulated trajectory is defined as a trajectory that
remains at a fixed distance with respect to a parent trajec-
tory. In this paper, we present a method to reconstruct an
articulated trajectory in three dimensions given the two di-
mensional projection of the articulated trajectory, the 3D
parent trajectory, and the camera pose at each time instant.
This is a core challenge in reconstructing the 3D motion of
articulated structures such as the human body because end-
points of each limb form articulated trajectories. We simul-
taneously apply activity-independent spatial and temporal
constraints, in the form of fixed 3D distance to the parent
trajectory and smooth 3D motion. There exist two solutions
that satisfy each instantaneous 2D projection and articula-
tion constraint (a ray intersects a sphere at up to two loca-
tions) and we show that resolving this ambiguity by enforc-
ing smoothness is equivalent to solving a binary quadratic
programming problem. A geometric analysis of the recon-
struction of articulated trajectories is also presented and a
measure of the reconstructibility of an articulated trajectory
is proposed.

1. Introduction
Reconstructing a moving point in three dimensions from

a sequence of two dimensional projections is an ill-posed
problem; any point on the line of projection connecting the
camera’s optical center and an image measurement can be
a solution. Yet, humans can effortlessly perceive depth if
the 2D points correspond to articulations of a known skele-
ton [21]. We study the conjecture that if 3D points move
smoothly with a known articulation structure, then it is pos-
sible to reconstruct their 3D locations from their 2D projec-
tions — without any activity-specific prior. The reconstruc-
tion of an articulated trajectory has a fundamental ambigu-

∗Project page: http://www.andrew.cmu.edu/user/hyunsoop/
iccv2011/iccv_project_page.html

ity because there are two intersecting points that satisfy an
articulation constraint and an image measurement at each
time instant [23]: for a 2D trajectory of F frames, there are
2F 3D trajectories that remain at fixed distance to a parent
trajectory1. The reconstruction of a smooth trajectory with-
out spatial constraints is also known to be fundamentally
ambiguous when the camera trajectory is smooth [26, 28].
We present an algorithm to reconstruct a smooth articulated
trajectory in 3D by simultaneously applying articulation and
smoothness constraints. The algorithm takes as input 2D
projections of the trajectory, its parent trajectory in 3D, and
the camera pose at each time instant. We present a measure
of reconstructibility of an articulated trajectory which char-
acterizes the stability of estimation under articulation and
smoothness constraints.

Each trajectory is parameterized by coefficients of a tra-
jectory basis in the spherical coordinate system to enforce
smoothness and articulation constraints. We show that if a
trajectory is embedded in the trajectory basis and articula-
tion constraints are applied, the reconstruction problem is
equivalent to a binary quadratic program which is known to
be NP-hard [15]. A number of algorithms exist that produce
an approximate solution [24, 25, 31] and we use a branch-
and-bound method to produce an initialization. We refine
the articulated trajectories by minimizing reprojection error.
The results are smooth, length preserved 3D trajectories.
We have applied our algorithm to recursively reconstruct the
3D motion of a human given the 3D motion of its root. Two
general approaches have been explored in prior literature
to reconstruct human articulated body motion. Data-driven
approaches use repositories of exemplars to overcome the
ambiguity [12,19,34,35,37] and physics-based approaches
use dynamical models of the human body to fit to the im-
age stream [11, 36, 38]. Unlike these approaches, our ap-
proach reconstructs human motion from purely geometric
constraints. Thus, the target motion is not confined to pre-

1The parent trajectory in a skeleton hierarchy is the proximal trajectory
to the root trajectory and the child trajectory is the distal trajectory.

http://www.andrew.cmu.edu/user/hyunsoop/iccv2011/iccv_project_page.html
http://www.andrew.cmu.edu/user/hyunsoop/iccv2011/iccv_project_page.html


2X

1X

3�

1P

2P
3P

r

2 2 3K× × →�P P P

r r

(a) Fixed length trajectory

2 1−X X

O

3�

1P�

2P�

3P�

r

2 2 3K× × →�P P P

r
r

(b) Relative trajectory

2 1−X X

2S

1P�

2P�

3P�

r

3�

2 2 2 1K× × → ×� �P P S

O

(c) Trajectory on a sphere

Figure 1. (a) An articulated trajectory is defined as a trajectory X2 which preserves distance from its parent trajectory X1 across all time
instances. (b) The articulated trajectory is transformed to the relative trajectory, X2−X1, by collapsing X1 to the origin. (c) The articulated
trajectory lies on a sphere of radius r. There are two intersecting points at each time instant between the sphere and the ray connecting the
camera’s optical center and an image measurement, which allow 2F possible 3D trajectories.

defined activities or view points. We defer a detailed dis-
cussion of related work to the end of the paper and present
the geometry of the problem and our proposed algorithm in
the sequel.

2. Geometry of an Articulated Trajectory
A point trajectory in 3D without any constraint can be

represented by a series of points:

X =


 x1

...
xF

 ,
 y1

...
yF

 ,
 z1

...
zF


 , (1)

where (xi, yi, zi) is the Cartesian coordinate of a point at ith

time instant and F is the number of frames. If a trajectory is
smooth, it is known that the trajectory can be expressed by
a linear combination of a compact trajectory basis [2], i.e.,

X = (Θax,Θay,Θaz) (2)

where Θ is a F × K matrix composed of a collection of
linear trajectory basis, a is the coefficients or the parameters
of a trajectory, and K is the number of basis.

If two trajectories, X1 and X2, are articulated, the dis-
tance between trajectories remains constant across all time
instances as shown in Figure 1(a), i.e.,

∆x2
i + ∆y2

i + ∆z2
i = r2, i = 1, · · · , F, (3)

where ∆X = X2 −X1 is the relative trajectory.
When a perspective camera captures these two trajec-

tories, points on the trajectories at the time instant are
projected onto the camera plane. The camera represen-
tation in this paper is a 3 × 4 projection matrix, Pi =
KRi

[
I3 −Ci

]
where I3, K, Ri, and Ci are a 3 × 3

identity matrix, the upper triangular intrinsic matrix, the

camera rotation matrix, and the camera’s optical center vec-
tor at the ith time instant, respectively.

If we transform one of the trajectories, X1, to the ori-
gin, O, the other trajectory, X2, maps to the relative trajec-
tory, ∆X, and a camera, Pi, maps to the relative camera
pose, P̃i with respect to X1 as shown in Figure 1(b). The
transformed relative trajectory lies on a sphere with radius
r. There are two points intersecting the sphere and the ray
connecting the camera’s optical center and an image mea-
surement at each time instant as shown in Figure 1(c). All
intersecting points are candidate 3D points which the rela-
tive trajectory passes and thus, there are 2F possible relative
trajectories.

The representation of a relative trajectory between the
articulated trajectories from Equation (2) (Cartesian coor-
dinate representation) has to meet the additional quadratic
equality constraints of Equation (3). Instead of the Carte-
sian coordinate representation, we introduce the spherical
coordinate representation for a relative trajectory to control
the distance between trajectories, explicitly, i.e.,

∆X = (Θaθ,Θaφ, r) , (4)

where θ is inclination from the z axis, φ is azimuth from the
x axis in the xy plane, and r is the radius . This representa-
tion enables us to describe an articulated trajectory precisely
because it satisfies the temporal constraint and the length
constraint simultaneously regardless of parameters by set-
ting the radius constant explicitly. It also enforces that all
imputed points between frames satisfy the articulation con-
straint while the Cartesian representation does not. For a
topological point of view, the reconstruction from the spher-
ical coordinate system is the mapping of P2F → S2K ×R1

while the reconstruction from the Cartesian coordinate sys-
tem is the mapping of P2F → P3K as shown in Figure 1(c).



3. Method
In this section, we present an algorithm for recovering

a trajectory which satisfies spatial and temporal constraints
using the spherical coordinate representation of a relative
trajectory presented in the previous section.

3.1. Objective Function of 3D Reconstruction

From the spherical coordinate representation, we recon-
struct smooth articulated trajectories which minimize the
reprojection errors:

argmin
∆X1,··· ,∆XP

F,P∑
i,j

d (xij , x̂ij) , (5)

where ∆Xj is the jth articulated (or relative) trajectory
parameterized by (Θaθ,j ,Θaφ,j , rj), d(·, ·) is the L2 dis-
tance between two arguments, P is the number of articu-
lated points, and xij and x̂ij are a 2D image measurement
and a reprojection of the jth point trajectory at the ith time
instant, respectively.

If articulated trajectories are sequentially linked, the tra-
jectories are

Xj = f(XR; ∆X1, · · · ,∆Xj−1), (6)

where f(·) is the forward kinematic function that takes
the root trajectory, XR, and all parent relative trajectories,
∆X1, · · · ,∆Xj−1, and outputs the jth trajectory, Xj , in
the Cartesian coordinate system. The reprojection, x̂ij is

x̂ij =

(
P1
i X̃j(i)

P3
i X̃j(i)

,
P2
i X̃j(i)

P3
i X̃j(i)

)
, (7)

where Pl
i is the lth row of the camera projection matrix at

the ith time instant and X̃j(i) is the homogeneous represen-
tation of the ith point in the jth trajectory, Xj(i).

3.2. Initialization of Equation (5)

The objective function of Equation (5) is highly non-
linear and direct optimization falls into a local minimum.
Therefore, a good initialization of trajectory parameters is
necessary. When the parent joint position and the length
between trajectories are known, there are two intersecting
points between a sphere whose origin is the parent joint po-
sition,Xp, and a line connecting an image measurement and
camera optical center, C, at each time instant as shown in
Figure 2(a). A point lying on the line is C + sv where s is
an unknown scalar and v is the direction of the projection,
i.e.,v = RTK−1

[
xT1

]T
. Then, the intersecting points

are

1X = C + s1v,
2X = C + s2v, (8)

where

s1,2 =
−vT∆C ±

√
(vT∆C)

2 − ‖v‖2 (‖∆C‖2 − r2)

‖v‖2 (9)

and ∆C = C−Xp. For each time instant, we have two can-
didate 3D points through which the reconstructed trajectory
must pass. Across all time instances, there are 2F possible
trajectories which satisfy the image measurements. Among
those trajectories, we look for the trajectory best described
by the trajectory basis.

Let χ be the relative direction vector with respect to the
parent point as shown in Figure 2(a). For each time instant,
χi takes either 1χi or 2χi, i.e.,

χi = 1χibi + 2χi(1− bi),
= (1χi − 2χi)bi + 2χi, where bi ∈ {0, 1}. (10)

Then, all possible trajectories can be represented as: χ1

...
χF

 =

 ∆χ1

. . .
∆χF

b +


2χ1

...
2χF


or χ = Eb + F, (11)

where b is a binary variable vector, 1χi and 2χi are two
relative direction vectors, and ∆χi = 1χi − 2χi. Finding
the best trajectory is equivalent to finding the binary vector,
b, which minimizes the following cost,

b∗ = argmin
b

∥∥(ΘΘT − I
)

(Eb + F)
∥∥2
, (12)

subject to b ∈ {0, 1}F .

Note that ΘΘT− I is the projection operation onto the null
space of the trajectory basis, Θ. Equation (12) is a quadratic
problem over binary variables.

A binary quadratic programming problem is NP-hard in
general. The structure of our problem does not fall into one
of the solvable cases; our quadratic matrix has positive off-
diagonal elements [30], is a non-singular matrix [3,14], and
cannot be represented by a tri-/five-diagonal matrix [16].
Also, the underlying graph structure is not series paral-
lel [6]. Thus, in theory, this is an intractable problem. How-
ever, a number of approaches have been proposed to ap-
proximate a solution of the problem efficiently using spec-
tral or semidefinite relaxation. A branch-and-bound rou-
tine2 with binary relaxation is one technique for global op-
timization. Since our quadratic matrix is positive definite,
the objective function behaves convexly in a branched rect-
angle, which enables us to define a tight lower bound of the
rectangle in polynomial time.

2http://www.dii.unisi.it/˜hybrid/tools/miqp/
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Figure 2. (a) There are two solutions, 1X and 2X which satisfy the
articulation constraint and an image measurement. (b) Articulated
trajectory and the camera pose are transformed with respect to the
parent trajectory.

Once b∗ is recovered, we project χ = Eb∗ + F onto
the trajectory basis space of the spherical coordinate sys-
tem to produce low dimensional parameters, i.e., ∆X =
(Θaθ,Θaφ, r). This yields an accurate initialization which
can be refined by nonlinear optimization of Equation (5).

When the relative trajectory, ∆X, passes a singular point
in the spherical coordinate system in the process of project-
ing χ onto the spherical coordinate system, a discontinuity
of angular trajectory occurs. For example, when φ passes
from ε > 0 to 2π − ε, this results in a discontinuity of
the angular trajectory because φ is defined in the interval
[0, 2π). To deal with discontinuous trajectories, we find the
best angular representation among all spherical representa-
tions of χ which preserves local continuity by allowing the
domains of θ and φ to be (−∞,∞).

4. Reconstructibility
We now explore the reconstruction ambiguity of an ar-

ticulated trajectory and analyze configurations in which the
reconstruction is accurate. Let X1 be a known parent tra-
jectory and X2 be an articulated child trajectory which are
observed at two time instances as shown in Figure 2(b). The
ground truth relative trajectory between X1 and X2 moves
from A to B. Â and B̂ are impostor points that satisfy the
image measurements as well as the articulation constraint.
In this section, we show that the relationship between the
true trajectory and the impostor trajectory inherently deter-
mines the reconstruction accuracy.

We define a measure of reconstructibility of an artic-
ulated trajectory, ηa, as a criterion to characterize recon-
struction accuracy where

ηa =

∥∥∥Θ⊥a⊥γC

∥∥∥∥∥∥Θ⊥a⊥γX

∥∥∥ , (13)

γX = ΘaγX
+ Θ⊥a⊥γX

, γC = ΘaγC
+ Θ⊥a⊥γC

, and
Θ⊥ is the null space of the trajectory basis. If the recon-
structibility of an articulated trajectory goes to infinity, there
exists a unique solution and it corresponds to the ground
truth trajectory. This can be proven by the following. For

each time instant, there are two intersecting points and an
estimation should be one of them:

γ̂ = (1− b)γX + bγC , b = 1 or 0 (14)

where γ̂ is an estimated angle. For an estimated angular
trajectory,

γ̂ = (I−B)γX + BγC, (15)

where B is a diagonal matrix whose entries takes either 1
or 0. The best trajectory represented by the trajectory basis
minimizes following:

argmin
â,B

‖Θâ− γ̂‖2 (16)

= argmin
â,B

‖Θâ− (I−B)γX −BγC‖2 (17)

= argmin
â,B

∥∥Θâ− (I−B) ΘaγX
−BΘaγC

− (I−B) Θ⊥a⊥γX
−BΘ⊥a⊥γC

∥∥∥2

. (18)

Reconstructibility of an articulated trajectory goes to infin-
ity when ||Θ⊥a⊥γC

|| → ∞ or ||Θ⊥a⊥γX
|| → 0. For either

case, B has to approach 0 to eliminate the residual of the
null components in Equation (18), which leads to â→ aγX

.
From the method of Park et al. [28], if the camera mo-

tion is slow or stationary, there is no way to reconstruct
an accurate trajectory using the trajectory basis because
it spans the camera trajectory well. The reconstructibil-
ity of an articulation states that if the parent trajectory is
independent of the camera trajectory, the trajectory recon-
struction is still possible because mixed motion between the
camera and the parent motions induces α motion where
α is the trajectory of viewing angles from a camera, α,
as shown in Figure 2(b). Even when camera and par-
ent motions are stationary, the reconstruction is possible if
γX ∈ Θ because each α is a nonlinear function of γX ,
i.e., α = tan−1 (sin γX/(l + cos γX)) where l is the dis-
tance between the parent trajectory and camera trajectory,
and thus α /∈ Θ and γC /∈ Θ unless l = 0 or l = ∞ (i.e.,
orthographic projection) as shown in Figure 2(b).

Figure 3(a) shows the distribution of 3D reconstruction
error with respect to reconstructibility of an articulated tra-
jectory, ηa, from the CMU motion capture data3. A trajec-
tory initialized by binary quadratic programming is the best
fitted trajectory by the trajectory basis. When ηa is high
(� 1), 3D reconstruction error of an articulated trajectory is
low because the ground truth trajectory is well described by
the trajectory basis and the ground truth trajectory and the
impostor trajectory are well separable. In contrast, when
ηa is low (� 1), our solution converges to the impostor
trajectory because the trajectory basis spans the impostor
trajectory better.

3http://mocap.cs.cmu.edu/
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Figure 3. (a) The accuracy of the reconstruction is high when ηa is greater than 1 where the trajectory basis spans the ground truth trajectory
better than the impostor trajectory. (b) Performance of our algorithm against error in the root trajectory, (c) the initialization error of the
radius, (d) amount of missing data are illustrated.

5. Results

To validate our method, we tested it with the HumanEva-
II dataset, synthesized trajectories, and the CMU motion
capture data quantitatively and with real human motion ex-
amples taken by video cameras qualitatively. We use the
first K Discrete Cosine Transform (DCT) basis4 in order
of increasing frequency and the number of basis is chosen
manually to span the trajectory well.

5.1. Quantitative Evaluation

We compare our method with the state-of-art human
pose estimation [4, 8, 20, 29] using the HumanEva-II
dataset5. Subject S2 with camera C1 is used to reconstruct
the articulated trajectories. Our method results in 128.8mm
of 3D mean error with 17.75mm standard deviation. This
error is comparable to the error of the state-of-art pose es-
timation algorithms (82mm∼211.4mm). It should be noted
that while all methods rely on activity specific training data
to reconstruct motions, our approach uses only activity in-
dependent geometric constraints.

We generate synthetic 2D perspective projections from
synthetic data and the CMU motion capture data and eval-
uate for three aspects: error in the root trajectory, error in
radius of an articulated trajectory, and missing data. For
evaluation of errors in the root trajectory and radius, we set
the camera stationary and vary error of the root trajectory
and radius error while the root position is moving. For the
evaluation of missing data, we artificially remove 2D pro-
jections randomly.

We measure 3D reconstruction error of an articulated tra-
jectory by varying the ratio between the average distance er-
ror of the root trajectory, re, and the radius of the articulated
trajectory, ra, as shown in Figure 3(b). The error in the par-
ent trajectory is a lower bound on the reconstruction error

4Hamidi and Pearl [17] have shown that the DCT provides the optimal
performance to encode the signal under the first order Markov processes.
Ahkter et al. [2] have empirically justified its optimality on motion capture
data.

5http://vision.cs.brown.edu/humaneva/

of the articulated trajectory. While the variance of the dis-
tribution for small root trajectory error (< 0.2) is low, i.e.,
the reconstruction can be done reliably, the reconstruction
from high root trajectory error (> 0.3) causes high error in
the child trajectory as well.

For the evaluation of the error in radius, we measure 3D
reconstruction error for erroneous radii multiplied by scale6.
Figure 3(c) illustrates robustness to erroneous initialization.
Even though the initial scale is small (i.e., 10−2 ∼ 100), the
3D reconstruction can be done reliably because before solv-
ing the binary quadratic programming, we adjust the radius
of the sphere to intersect with the line of projection at one
point at least. When the initial scale is high (> 101), how-
ever, the reconstruction becomes unreliable because the ray
intersects with the sphere at all time instances and the opti-
mization falls into a local minimum around a mis-estimated
trajectory.

We also test with the CMU motion capture data for the
evaluation of missing data caused by occlusion or measure-
ment failure. When there are missing data, our spatial and
temporal constraints enable us to impute missing points.
For this experiment, we artificially introduce length errors,
image measurement noise, and root trajectory error while
the camera is stationary. Our algorithm produces an average
error7 of 13% for 5% missing data as shown in Figure 3(d).

5.2. Qualitative Evaluation

We apply our algorithm to reconstruct human body mo-
tion in 3D from 2D perspective projections. Reconstruction
from a stationary camera and a moving camera are tested
and the statistical anthropometric length ratio of the human
body is used for the initialization of length ratio with some
modifications for accurate skeleton estimation purpose. The
scale of the skeleton is roughly initialized and we manually
label image measurements for articulated points.

Figure 4(a) and Figure 4(b) show the reconstruction of
the juggling motion and the motion in front of a webcam,

6Initial radius scale error 1 means the ground truth.
7error = ||X − X̂||/||X||, where X is the ground truth trajectory and

X̂ is the estimated trajectory.

http://vision.cs.brown.edu/humaneva/


respectively, in 3D from a stationary video camera. We
project the 2D root trajectory to the unit depth plane and
use it as the 3D root trajectory because the depth of the root
trajectory is underdetermined from a stationary camera. For
both experiments, we use the torso as the root. From the
root trajectory, all articulated trajectories are reconstructed
recursively.

We also apply our method to data captured from a mov-
ing camera to recover the playing card motion and the
yoga motion as shown in Figure 4(c) and Figure 4(d), re-
spectively. Both camera trajectories are smooth and well
spanned by the trajectory basis. For the reconstruction of
the root trajectory, we choose a relatively rigid part of hu-
man body through a sequence and reconstruct them using
the structure from motion algorithm. Once relative camera
poses are estimated from the rigid part of the human body,
we estimate the similarity transform between the relative
camera poses and the original camera poses estimated by
3D static structure. Head and torso are used as the root for
playing card motion and yoga motion, respectively.

6. Related Work
Points on objects involve spatial and temporal con-

straints in general. Bregler et al. [10] introduced a spa-
tial constraint by assuming that a shape undergoes a de-
formation which can be well expressed by a linear com-
bination of a compact shape basis. Subsequent work has
discussed ways to select the basis and bilinear optimiza-
tion schemes that separate information of camera motion
and structure [9, 33, 39]. For multiple rigid bodies, Costeira
and Kanade [13] proposed a factorization method using 2D
trajectories in an image stream. Yan and Pollefeys [40] ex-
tended this noting that there is rank loss when two rigid bod-
ies are articulated. In the temporal domain, Akhter et al. [2]
proposed a linear trajectory basis using the Discrete Cosine
Transform (DCT) by assuming that an underlying 3D trajec-
tory moves continuously and smoothly. With a calibrated
camera, an algebraic solution of trajectory reconstruction
in 3D for specific algebraic curves (lines and conics) has
been proposed by Avidan and Shashua [5] and later it was
generalized by Kaminski and Teicher [22]. Park et al. [28]
proposed a linear solution for the trajectory reconstruction.
Previous methods exploit either spatial constraints or tem-
poral constraints. In our method, we use the spatial con-
straint in the form of articulation and the temporal constraint
in the form of smoothness.

For human motion in particular, human pose estimation
from a single image by applying a spatial constraint (skele-
tal structure) was proposed by Taylor [32] (parameteriza-
tion of limb lengths by a scalar), by Barron and Kakadi-
aris [7] (joint motion constraint from the anthropometric
statistics), by Parameswaran and Chellappa [27] (camera
pose estimation from head orientation and rigidity of torso),

and by Agarwal and Triggs [1] (silhouette based regres-
sion). Human motion estimation from an image sequence
of a monocular camera has been studied as an extension of
human pose estimation. Two popular approaches have been
explored: data driven approach and physics based approach.
Data driven approach is to learn low dimensional subspace
or latent variables that control underlying human skeletal
motion fully using motion capture data or annotated video
data. Sidenbladh et al. [18] applied a Bayesian framework
for 3D human pose tracking using a generative model of the
human body and a prior distribution defined by a temporal
dynamics model. Howe et al. [19] showed Baysian learn-
ing, Choo and Fleet [12] sampled high dimensional train-
ing space from hybrid Monte Carlo method, and Urtasun
et al. [34] used Principle Coordinate Analysis (PCA) for
learning of specific motion (e.g. walking and golfing). Like
Taylor’s work [32], Wei and Chai [37] introduced a geomet-
ric solution of motion reconstruction using the bone sym-
metric constraint from biomechanical data. Valmadre and
Lucey [35] discussed the validity of Wei and Chai [37]’s
work and extended their algorithm using a structure from
motion scheme. Recently, physics based approaches have
received attention. Brubaker et al. [11] have shown recon-
struction of a bipedal locomotion from a dynamical model
and Vondrak et al. [36] have applied multibody dynamics
simulation to infer the most plausible human motion in 3D.
Wei and Chai [38] have built an interactive system that in-
tegrates a dynamical model to capture motion from a video.

Unlike previous methods, our approach relies purely on
a geometric interpretation of the articulation constraint by
parameterizing a trajectory in a way that satisfies both spa-
tial and temporal constraints simultaneously.

7. Discussion
In this paper, we study an articulated trajectory which

remains at a constant distance with respect to the parent tra-
jectory. The relative trajectory is a trajectory on a sphere
and there are 2F trajectories that meet the spatial constraint
and image measurements. Among those trajectories, we
look for the best trajectory spanned by the trajectory ba-
sis and we identify that this is equivalent to solving a binary
quadratic programming problem. The relative trajectory ob-
tained by the binary quadratic program is parameterized by
a compact trajectory basis in the spherical coordinate sys-
tem, which satisfies spatial and temporal constraints, simul-
taneously. We optimize the trajectory by minimizing repro-
jection error. Reconstruction of the articulated trajectory is
fundamentally limited by the motion induced by the cam-
era and the parent trajectory and we propose a measure of
reconstructibility of an articulated trajectory, which char-
acterizes the reconstruction accuracy. Our results show that
we are able to reconstruct highly articulated human motions
from a stationary camera and a moving camera.
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study of parts-based object class detection using complete
graphs. IJCV, 2010. 5

[9] M. Brand. A direct method for 3D factorization of nonrigid
motion observed in 2D. In CVPR, 2005. 6

[10] C. Bregler, A. Hertzmann, and H. Biermann. Recovering
non-rigid 3D shape from image streams. In CVPR, 1999. 6

[11] M. A. Brubaker and D. J. Fleet. The kneed walker for human
pose tracking. In CVPR, 2008. 1, 6

[12] K. Choo and D. J. Fleet. People tracking using hybrid monte
carlo filtering. In ICCV, 2005. 1, 6

[13] J. P. Costeira and T. Kanade. A multibody factorization
method from independently moving objects. IJCV, 1998. 6

[14] J.-A. Ferrez, K. Fukuda, and T. M. Liebling. Solving the
fixed rank convex quadratic maximization in binary variables
by a parallel zonotope construction algorithm. European
Journal of Operations Research, 2004. 3

[15] M. R. Garey and D. S. Johnson. Computer and Interactabil-
ity: A guide to the theory of NP-Completeness. Freeman,
1979. 1

[16] S. Gu. Polynomial time solvable algorithms to binary
quadratic programming problems with q being a tri-diagonal
or five-diagonal matrix. In WCSP, 2010. 3

[17] M. Hamidi and J. Pearl. Comparison of the cosine and
fourier transforms of markov-1 signal. IEEE Trans. Acoust.
Speech, Signal Process, 1976. 5

[18] M. J. B. Hedvig Sidenbladh and D. J. Fleet. Stochastic track-
ing of 3D human figures using 2D image motion. In ECCV,
2000. 6

[19] N. R. Howe, M. E. Leventon, and W. T. Freeman. Bayesian
reconstruction of 3D human motion from single-camera
video. In NIPS, 1999. 1, 6

[20] Z. L. Husz, A. M. Wallace, and P. R. Green. Evaluation of a
hierarchical partitioned particle filter with action primitives.
In CVPR Workshop, 2007. 5

[21] G. Jansson, S. S. Bergstorm, and W. Epstein. Perceiving
Events and Objects. Lawrence Erlbaum, 1994. 1

[22] J. Y. Kaminski and M. Teicher. A general framework for
trajectory triangulation. Journal of Mathematical Imaging
and Vision, 2004. 6

[23] H.-J. Lee and Z. Chen. Determination of 3D human body
postures from a single view. Computer Vision, Graphics,
and Image Processing, 1985. 1

[24] P. Merz and B. Freisleben. Greedy and local search heuristics
for unconstrained binary quadratic programming. Journal of
Heuristics, 2002. 1

[25] C. Olsson, A. P. Eriksson, and F. Kahl. Solving large scale
binary quadratic problems: Spectral methods vs. semidefi-
nite programming. In CVPR, 2007. 1

[26] K. E. Ozden, K. Cornelis, L. V. Eycken, and L. V. Gool. Re-
constructing 3D trajectories of independently moving objects
using generic constraints. CVIU, 2004. 1

[27] V. Parameswaran and R. Chellappa. View independent hu-
man body pose estimation from a single perspective image.
In CVPR, 2004. 6

[28] H. S. Park, T. Siratori, I. Matthews, and Y. Sheikh. 3D recon-
struction of a moving point from a series of 2D projections.
In ECCV, 2010. 1, 4, 6

[29] P. Peursum, S. Venkatesh, and G. West. A study on smooth-
ing for particle-filtered 3D human body tracking. IJCV,
2010. 5

[30] J. C. Picard and P. M. Ratliff. Minimal cost cut equivalent
networks. Management Science, 1973. 3

[31] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidef-
inite relaxation for (0,1)-quadratic prgramming. Journal of
Global Optimization, 1995. 1

[32] C. Taylor. Reconstruction of articulated objects from point
correspondences in a single uncalibrated image. In CVIU,
2000. 6

[33] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid
structure-from-motion: Estimating shape and motion with
hierarchical priors. PAMI, 2008. 6

[34] R. Urtasun, D. J. Fleet, and P. Fua. Temporal motion mod-
els for monocular and multiview 3-D human body tracking.
CVIU, 2006. 1, 6

[35] J. Valmadre and S. Lucey. Deterministic 3D human pose
estimation using rigid structure. In ECCV, 2010. 1, 6

[36] M. Vondrak, L. Sigal, and O. C. Jenkins. Physic simulation
for probabilistic motion tracking. In ECCV, 2008. 1, 6

[37] X. Wei and J. Chai. Modeling 3D human poses from uncali-
brated monocular images. In ICCV, 2009. 1, 6

[38] X. Wei and J. Chai. Videomocap: Modeling physically real-
istic human motion from monocular video sequences. SIG-
GRAPH, 2010. 1, 6

[39] J. Xiao, J. Chai, and T. Kanade. A closed-form solution to
non-rigid shape and motion recovery. IJCV, 2006. 6

[40] J. Yan and M. Pollefeys. A factorization-based approach for
articulated nonrigid shape, motion and kinematic chain re-
covery from video. PAMI, 2008. 6



(a) Juggling motion from a stationary camera

(b) Motion in front of a webcam from a stationary camera

(c) Playing motion from a moving camera

(d) Yoga motion from a moving camera

Figure 4. (a) Juggling motion, (b) motion in front of the webcam from a stationary camera, (c) playing card motion, and (d) yoga motion
from a moving camera. Image measurements are superimposed on images in the top row and 3D reconstruction of the motion corresponding
to the images are shown from different views in the second and the third rows. The right-most figures summarize motion by showing whole
trajectories.


