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Abstract— In this paper, we present an approach that allows
a quadrocopter to follow a person and to recognize simple
gestures using an onboard depth camera. This enables novel
applications such as hands-free filming and picture taking. The
problem of tracking a person with an onboard camera however
is highly challenging due to the self-motion of the platform.
To overcome this problem, we stabilize the depth image by
warping it to a virtual-static camera, using the estimated
pose of the quadrocopter obtained from vision and inertial
sensors using an Extended Kalman filter. We show that such a
stabilized depth video is well suited to use with existing person
trackers such as the OpenNI tracker. Using this approach, the
quadrocopter not only obtains the position and orientation of
the tracked person, but also the full body pose – which can
then for example be used to recognize hand gestures to control
the quadrocopter’s behaviour. We implemented a small set of
example commands (“follow me”, “take picture”, “land”), and
generate corresponding motion commands. We demonstrate the
practical performance of our approach in an extensive set of
experiments with a quadrocopter. Although our current system
is limited to indoor environments and small motions due to the
restrictions of the used depth sensor, it indicates that there is
large potential for such applications in the near future.

I. INTRODUCTION

Imagine you had a flying camera that was able to follow
you and recognize simple commands given by hand gestures:
Such a device would be very useful, for example take a
video sport activities such as climbing or skiing – easily
allowing videos and pictures to be taken from a whole new
perspective without the need for a full-scale helicopter or a
pilot who remotely controls a small-scale UAV. The ability
to recognize a set of control commands in the form of hand
gestures completely eliminates the need for a remote control
even to transmit high-level control commands such as “land”
or “take a picture now”. While people following by itself is a
useful application, quadrocopters are also envisioned to serve
as flexible helpers for autonomous mapping, in search and
rescue tasks, and even for the transportation of small goods.
In all of these tasks, a natural user interface that allows a
person to interact with the quadrocopter is highly relevant.

Although today’s quadrocopter systems have several limi-
tations with respect to their payload, computational capabili-
ties, battery time, and safety, it is clear that with progressing
miniaturization the realization of such devices will come
soon within reach. A pioneering example is the Joggobot [11]
that is able to autonomously follow an athlete wearing a
special t-shirt equipped with optical markers. The goal of this
paper is to eliminate this requirement and to enable a similar

Fig. 1. Our approach enables a quadrocopter to follow a person and to
understand simple gesture commands such as “follow me”, “take picture”,
and “land”.

application without the use of artificial markers. Therefore,
we investigate in this paper how to detect a person and track
the full body pose from a moving camera, how to extract
simple gesture commands from this pose, and to make the
quadrocopter react accordingly.

While people detection and tracking has been studied
intensively in computer vision and robotics, many existing
solutions [14, 2, 30] assume a static sensor which simplifies
background subtraction and tracking significantly. A large
body of work exists on pedestrian detection for driving
assistance systems and autonomous cars [8, 24], where
often only the position and the movement direction of the
persons is estimated. In contrast, our application requires
people detection and tracking from a freely moving flying
platform. Furthermore, we need the full body pose for gesture
recognition. To the best of our knowledge, we are the first
to tackle this problem for the application on a quadrocopter.

In our current system, we use an AscTec Pelican quadro-
copter that is equipped with an Asus Xtion Pro Live depth
camera. The core idea behind our approach is to stabilize the
depth image in software by simulating one or more static
cameras using image warping. We found that the warped
depth images from our simulated camera are steady enough
to be used with existing pose trackers such as the one from
OpenNI [25]. The camera pose estimation runs on board.
Although we currently run all computationally intensive tasks
offboard on a ground station, as only a CPU is needed, it
is feasible and straight-forward to run the same software
onboard.In each time step, we obtain from the tracker the full
body posture of the tracked person. This allows us to follow
this person at a certain distance, and to recognize simple



hand gestures such as a raised left or right arm. We map these
gestures to commands such as “follow me”, “hold position”,
“take picture”, and “land”. Overall, our system demonstrates
that person following and gesture recognition is feasible with
a quadrocopter. A video illustrating our approach is included
in the supplemental material.

II. RELATED WORK

People detection and tracking has a long history in com-
puter vision and robotics (see [21, 26] for two recent sur-
veys). Various approaches have been proposed to detect per-
sons on camera images [16, 4]. Popular techniques include
the sliding window approach, boosting [31], histograms of
gradients [6], and chamfer matching. It has been shown that a
higher detection accuracy can be achieved when additionally
motion is considered [32]. Excellent prior work also exists
for people detection from a moving vehicle [9, 8, 7], which is
relevant for driving assistance systems and the autonomous
car of the future. After a person has been detected, the next
problem is to estimate his body posture [10, 29, 1, 15].
This can be either estimated top-down, for example, using
a particle filter and an appearance model, or bottom-up, by
using a part detector or pixel-wise classifier.

Next to camera images, also range data from laser scanners
has been used in particular by the robotics community, both
in 2D [2, 28] and 3D [24, 3]. Low-cost depth cameras
such as the Microsoft Kinect stimulated the development
of novel approaches to people detection and tracking on
depth images [14, 30, 19, 35]. Shotton et al. [14] learn deep
decision trees to detect and track up to 20 body parts of
the human body. By combining color and depth information,
the detection performance can further be improved [30, 19].
However, most approaches still assume a static camera,
which simplifies image segmentation. This is in particular
true for both the Microsoft Kinect tracker1 and the OpenNI
tracker2. In preliminary experiments, we found that both
trackers fail consistently when used with a moving camera,
that is they detect a person where there is none, or fail to
detect a person present in the image. Some examples are
shown in Fig. 2 and Fig. 3.

Early work on people following with quadrocopters there-
fore relies on visual markers. Gräther and Müller recently
presented a jogging companion that motivates a person
during jogging [11]. Another interesting application is to use
a quadrocopter to provide external visual imagery, which
allows for example athletes to gain a better understanding
of their motions [13]. Lichtenstern et al. [17] presented a
system where they control a team of flying robots using
gestures, captured by a hovering quadrocopter with a depth
camera. This is different from our work as the quadrocopter
is only hovering, so no substantial movement of the camera
is expected. Another recent approach recognizes gestures by
using optical flow to cancel the egomotion [22]. Using this

1http://microsoft.com/en-us/kinectforwindows/
develop/overview

2http://openni.org

Fig. 2. OpenNI user segmentaion fails for non-static cameras. When a
person is detected, it is assigned a particular color whereas non-colored
depth map implies no person detection.

Fig. 3. False positives with non-stationary camera. It shows that the OpenNI
tracker detects the background as a human.

approach, they track the face and the hands but do not obtain
the full body pose.

The key idea behind our work is to stabilize the depth
image as a pre-processing step so that existing trackers which
assume a static camera become directly applicable – in the
presence of translational camera movement, this however
is only possible with the availability of depth-information
[23, 12, 20]. Full 3D video stabilization methods require
an intermediate 3D reconstruction of the scene to allow for
the simulation of novel viewpoint [5]. By using a depth
camera such as the Microsoft Kinect, one already obtains a
suitable depth image that can be used for motion estimation
and novel view synthesis [18]. A similar approach was
recently described to stabilize the stereo images of a walking
humanoid robot [27].

In this work, we enable a quadrocopter to detect and
track the user with an onboard depth camera. In contrast
to previous work, we do not require artificial markers on the
person. Furthermore, we implemented a gesture recognition
that allows the user to give simple commands.

III. APPROACH

Our approach consists of five main components, as illus-
trated in Fig. 4. We employ an AscTec Pelican quadrocopter
that we equipped with an Asus Xtion Pro Live sensor
for people detection and a PointGrey FireFly camera for
localization. The PointGrey FireFly camera is used to track
the quadrocopter’s movement using ceiling markers, based
on the ARToolkitPlus library [33]. We employ an Extended
Kalman filter to optimally fuse these visual pose estimates
with inertial measurements from an onboard IMU. Based
on the estimated pose estimates, the depth image from the
Asus sensor is stabilized, i.e. warped into a virtual, static
camera, and fed into the OpenNI tracker. We then use the full
body pose to generate the next waypoint and to recognize
a small set of gestures, and a LQR controller to steer the
quadrocopter to the desired location, using the open-source
implementation of ETH [34].

A. Quadrocopter localization
As localization is not the focus of this paper, we employ

marker-based localization using the ArtoolkitPlus library. We

http://microsoft.com/en-us/kinectforwindows/develop/overview
http://microsoft.com/en-us/kinectforwindows/develop/overview
http://openni.org


Fig. 4. System overview. We use a depth camera on a flying platform to
detect a person. We stabilize the depth image based on the current pose
estimate of the quadrocopter.

use the multi-marker mode, which provides us with accurate
and robust pose estimates and allows us to cover a large part
of our lab. In particular, we mounted a matrix of 4×4 markers
on the ceiling over an area of 3×3m. Mounting the markers
on the ceiling instead of on the floor has the advantage that
we can perform autonomous take-off and landing behaviors.
Each marker has a side length of 45cm. At the typical flight
height of 0.6m, we found that the quadrocopter observes on
average 4 markers at the same time. Our setup consisting
of the quadrocopter, the ceiling markers, and the relevant
coordinate systems are illustrated in Fig. 5.

We defined the positions and orientations of all markers
in a map, and the ArtoolkitPlus library provides us in each
time step with the camera pose with respect to this map. In
the remainder of this work, we represent a 3D pose in terms
of its transformation matrix, i.e.,

T =

(
R t
0 1

)
∈ R4×4, (1)

where R ∈ R3×3 is the rotation matrix and t ∈ R3 is the
translation vector. In each time step, we obtain the pose of the
markers relative to the camera, which we denote by T marker

camera .
Furthermore, we defined the world coordinate system that
we located in the middle of our quadrocopter lab on the
floor, and determined manually the transformation T marker

world
between this coordinate system and the marker map, and
the transformation T baselink

camera from the camera to the base link
of the robot. As the monocular camera is pointing upwards
to the ceiling while the Asus sensor is pointing horizontally
forward towards the user, we constructed a special calibration
stick that we could hold in front of both cameras at the
same time. The size of the calibration stick was chosen so
that we could first determine the relative pose T checkerboard2

checkerboard1
between both checkerboards by holding the stick in front of
a single camera, and then use this calibration to estimate the
transformation between the two cameras T asus

camera.

Transformation matrices can be easily concatenated and
inverted. In the following, we will briefly introduce the

Fig. 5. Coordinate frames used in our approach. Static transformations are
shown in blue whereas camera pose is estimated in realtime and is shown
in yellow.

notation that we use throughout the remainder of this paper:
Given a 3D point pw = (xw,yw,zw)

> ∈ R3 in world coordi-
nates, we can compute the corresponding position in camera
coordinates pc = (xc,yc,zc)

> ∈ R3 as
xc
yc
zc
1

=

(
R t
0 1

)
xw
yw
zw
1

 (2)

where R and t are the rotation and translation of the corre-
sponding transformation T world

camera.
We assume a pinhole camera model, that defines the

relationship between a 3D point p = (x,y,z)> ∈ R3 and a
2D pixel x = (i, j)> ∈ R2 as follows,

π(x,y,z) =
(

fxx
z

+ cx,
fyy
z

+ cy

)>
= (i, j)>. (3)

Here, fx, fy,cx,cy refer to the focal length and the optical
center of the camera, respectively. In reverse, given the depth
z of a pixel (i, j), we can reconstruct the 3D point using

ρ(i, j,z) =
(
(i− cx)z

fx
,
( j− cy)z

fy
,z
)>

= (x,y,z)>. (4)

B. Position control

The quadrocopter estimates its current pose from visual
pose estimates and IMU readings using an extended Kalman
filter [34]. This state estimate is then used for position
control.

In a set of preliminary experiments, we found that we can
achieve accurate and stable position control. In a first exper-
iment, we sent a hovering command to the quadrocopter at
point pgoal = (0,0,0.5). We measured an average root mean
square error (RMSE) around the given set point of 2.78cm
along the x-axis, 2.22cm along the y-axis, and 0.73cm along
the z-axis. The maximum run-away was 7.4cm along y-axis
over a period of 5 minutes. In a second experiment, we
sent a simple trajectory in form of a rectangle with 40cm
side length to the quadrocopter. The results are visualized in
Fig. 6. As can be seen from this plot, we achieve accurate



−0.2
0

0.2 −0.2
0

0.2
0

0.5

z[
m

]

Trajectory

x[m] y[m]

−0.2
0

0.2 −0.2
0

0.20

0.5

z[
m

]

Actual Trajectory
Desired Trajectory

x[m]
y[m]

(a) Quadrocopter hovering (b) Square Trajectory

Fig. 6. Position control of the quadrocopter

position control with this setup.

C. Camera stabilization

As we could confirm in our preliminary experiments, the
OpenNI tracker only performs well with a stationary camera
(see Fig. 2 and 3), which is due to the fact that internally
the tracker performs background subtraction to segment the
image into moving foreground (persons) and static back-
ground. The OpenNI tracker has an initialization time of a
few seconds in which it learns the background model, which
is then used for pixel-wise, binary classification. On a flying
platform however, the constraint of a stationary background
is clearly violated and this approach therefore fails.

We therefore propose to simulate a virtual static camera
based on the pose estimate of the quadrocopter. To this aim,
we memorize the pose T static

world of a reference frame that we
use as the pose of the static-virtual camera. As reference
frame, we choose the current camera pose at time step t and
keep it as long as person tracking is successful. In principle, it
would be sufficient to initialize a new static camera only after
tracking has been lost, as long as enough previous frames are
kept in a buffer to allow immediate (re-)initialization of the
people tracker. Alternatively, several static cameras can be
maintained at the same time and used for redundant tracking.
In our approach, we do not deal with the problem of re-
initialization, but assume that the person is staying within
the frustrum of the first static camera.

To create a virtual image in a static camera frame, we need
to render the depth image from the perspective of a fixed,
alternative viewpoint – as the OpenNI tracker solely works
on depth information, only the synthesized depth image is
required. This is done by first un-projecting the pixels of the
current camera image to reconstruct the respective 3D point,
which is then transformed into the coordinate frame of the
virtual, static camera and re-projected onto the image plane.
Consider a depth image Ik taken by a current camera at time
k with pose T k

world. The reconstructed 3D point corresponding
to a pixel (i, j) with depth Ik(i, j) is given by

pk(i, j) = ρ(i, j, Ik(i, j)). (5)

Given the transformation between the current and the static

Fig. 7. Visualization of the raw and the stabilized depth images with
camera motion along a square trajectory (top and bottom row respectively).
The red dot always marks the same (absolute) pixel in the image. As can be
seen, the red pixel jumps significantly in the raw images, while it remains
stable in the stabilized ones.

camera

T k
static = (T static

world )
−1T k

world, (6)

we can transform the 3D point into the frame of the static
camera as follows,

pstatic(i, j) = T k
staticpk(i, j). (7)

We project this point onto the image plane of the static
camera, i.e.,

(i′, j′)> = π(pstatic(i, j)), (8)

and assign the computed depth at the corresponding location
in the warped depth image,

Istatic(bi′+0.5c,b j′+0.5c)← zstatic. (9)

When two points are projected onto the same pixel we
assume the further-away one to be occluded and remove it.
The above procedure is applied to all image pixels, i.e. (5)
to (9), to obtain a warped depth image Istatic in the frame of
the virtual, static camera.

Forward warping, as described above, is known to produce
holes in the warped image, due to the discrete sampling of
pixels. To remedy this, we apply median filtering over a small
5×5 patch to close holes and regularize the result, i.e.,

Istatic(i, j)←median
(k,l)∈S

Istatic(i+ k, j+ l). (10)

Note that this procedure requires only very few additions
and multiplications for each pixel, and therefore can be
computed very efficiently. Fig. 7 shows the result of warping
when the camera was following a square trajectory. A par-
ticular point has been marked and labeled across the frames
for reference. Each frame shown here has been captured after
four seconds to allow significant camera motion.

D. Cascaded control

Figure 8 shows the flow diagram of our cascaded control
architecture used in our approach. The low level processor
(LLP) provides the attitude control for the platform. The
high level processor (HLP) runs the extended Kalman filter
and position/velocity control at 1KHz, and accepts velocity
commands and waypoints. The error controller is a LQR



Fig. 8. Scheme of our cascaded control architecture used in our approach.

controller for each axis. The feed forward model allows
the quadrocopter to quickly reach the waypoint and reduces
overshoot [34]. It is possible to specify the approach speed
and accuracy with which the quadrocopter should reach
the goal location. The onboard PC running ROS supplies
the HLP with the visual pose estimates and velocity com-
mands/waypoints at 30Hz.

E. Robust person following

As explained above, we first stabilize the incoming depth
stream using our approach with a static-virtual camera.
Subsequently, we feed the stabilized depth stream into the
OpenNI tracker to obtain the 3D joint positions pjoint

static of all
15 body parts, where joint ∈ {torso, lefthand, . . .}. Note that
we obtain the resulting joint positions in the frame of the
static-virtual camera, from where we transform them into
the world frame for following the person. For example, we
obtain the joint position of the torso in the world frame as:

ptorso
world = T static

world ptorso
static (11)

When the quadrocopter is in person following mode, we
aim to keep the relative pose. We save the initial relative
pose when the person following mode is activated, i.e.,

∆desired = ptorso
world−pbaselink

world (12)

where baselink refers to the center of the quadrocopter. From
then on, we continuously generate waypoints such that this
relative pose is maintained, i.e., we compute

pwaypoint
world := ptorso

world−∆desired (13)

that we send to the position controller. We propose the fol-
lowing algorithm 1 for robust person tracking and following.

F. Gestured controlled flight

One benefit of our approach is that we obtain the full
body pose of the person in the field of view of the camera.
This allows us to specify simple gesture commands that the

1: function PERSON TRACKING FROM MOVING CAMERA
2: input: Current camera pose T1
3: Initialize virtual static camera pose at Tstatic := T1
4: for each new depth image Ik and camera pose Tk
5: Calculate transform T k

static between current
6: and static camera
7: Generate depth image Istatic according to (5)–(9)
8: Feed stabilized depth image to OpenNI tracker
9: if gesture recognized

10: Take picture or land
11: else
12: Update waypoint and follow person
13: end if
14: end function

Algorithm 1: Robust person tracking on stabilized images

quadrocopter can recognize. In particular, we implemented
gestures such as raising the left or right arm. When both arms
are low, the quadrocopter follows the person as described in
the previous section. To detect an arm gesture, we check
for a certain vertical distance between the hand and the
corresponding hip joint. For example, to recognize whether
the right hand is raised, we check whether

zrighthand
world − zrighthip

world ≥ 50cm. (14)

If this condition is met, the quadrocopter saves an image of
the person to disk (see Fig. 11 for a few snapshots). When
the user raises the left hand, we land the quadrocopter at
its current position by sending a motion command with a
constant negative velocity to the HLP.

IV. RESULTS

In this section, we present an evaluation of our approach.
In particular, the goal of our experiments is to demonstrate
that (1) our approach to video stabilization using the visual
pose estimate is valid, (2) person can be detected and the
full body pose can be tracked, (3) various gestures can be
recognized reliably, and (4) the overall system enables person
following with the quadrocopter and, also, allows the user to
give simple commands such as “take picture”, and “land”.

A. Video stabilization

Figure 7 shows the raw video and the stabilized video
from the quadrocopter while it was following a rectangular
trajectory (as shown in Fig. 6). As can be seen, the changes
in the pose of the quadrocopter lead to significant changes
of the depth image, while the stabilized depth image remains
static. The larger the change in viewpoint however, the
sparser the synthesized depth image becomes due to self-
occlusions and a changing camera frustrum. As a result, in
principle the quadrocopter needs to re-initialize the static
camera after substantial motion.

B. Person detection and pose recognition

We feed the stabilized depth image to the OpenNI tracker.
Figure 9 shows an example of full body pose tracking
from a moving camera. We found that the OpenNI tracker
usually requires up to 80 frames to initialize the background
model, and another 40 frames to initialize person tracking.



Therefore, we plan to implement a ring buffer of 120
frames to ensure that the static camera can be seamlessly re-
initialized at a different location without loosing track of the
followed person. To evaluate the performance of the tracker

Fig. 9. Illustration of robust person tracking with stabilized depth video.
The OpenNI tracker successfully initializes tracking, although the real depth
camera undergoes a strong motion.

on a moving platform, we commanded the quadrocopter to
keep position and to fly on a rectangular path. We asked
different persons to stand at a distances of 2m in front of
the quadrocopter, and evaluated the tracking performance
on raw video and stabilized video. Table I gives the result
over a total of 1000 frames: As can be seen, the average
performance with stabilized depth video is substantially
higher than without stabilization.

TABLE I
TRACKING PERFORMANCE WITH AND WITHOUT VIDEO STABILIZATION

FOR DIFFERENT MOTIONS OF THE QUADROCOPTER. THE PERCENTAGES

GIVE THE RATIO OF FRAMES WITH SUCCESSFUL POSE TRACKING.

flight path depth video performance

hovering raw video 30%
stabilized video 95%

rectangular raw video 16%
path stabilized video 86%

C. Person following

We evaluated our approach of person following in a
scenario where the person moved along the x-axis i.e forward
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Fig. 10. Robust person following over a timespan of three minutes.

and backwards. Figure 10 shows the results, which clearly

TABLE II
EVALUATION OF THE GESTURE RECOGNITION PERFORMANCE OVER

FIVE DIFFERENT SUBJECTS. THE OVERALL PERFORMANCE WAS 92.5%.

test subject raise left hand raise right hand

person 1 100% 90%
person 2 90% 100%
person 3 100% 90%
person 4 80% 100%
person 5 90% 80%

overall performance 92.5% 92.5%

show that quadrocopter accurately followed the person’s
movement throughout the whole flight.

D. Gesture recognition

Based on the full body pose obtained from the stabilized
depth video, we recognize various arm gestures such as
“raise left hand” and “raise right hand”. To evaluate the
performance of recognition, we asked 5 different subjects
to perform these gestures while standing in front of the
hovering quadrocopter. Each subject was asked to repeat each
gesture 10 times. The results are given in Tab. II. While the
recognition rates differ per person, the overall recognition
rate of 92.5% indicates that our gesture recognition system
allows a user to give a small set of commands to a flying
quadrocopter without requiring a remote control.

E. Full system

To evaluate the overall performance of the overall system,
we asked three subjects to perform a simple routine with the
quadrocopter. As soon as the quadrocopter detects a person,
it switches to person following mode. Then the person walks
a small distance (around 1m) into any desired direction. The
quadrocopter copies this behaviour. Subsequently, the person
raises his right hand to trigger a picture on the quadrocopter.
By raising the left hand, the quadrocopter lands. A subset of
the images taken by the quadrocopter during the right hand
gesture are shown in Fig. 11.

Our experiments clearly show that depth video stabiliza-
tion is a suitable approach to enable person detection and
tracking with a flying quadrocopter. Furthermore, the full
body pose allows us to recognize simple gestures, which
enables a user to give various control commands to a
quadrocopter. Finally, the demonstration of the full system
indicates that such applications bear a large potential for
the future. However, we believe that significant progress in
miniaturization of all components is required before such a
solution becomes attractive for the consumer.

V. CONCLUSION

In this paper, we demonstrated that full-pose person
tracking and simple gesture recognition is feasible using an
autonomous quadrocopter equipped with an on-board depth
camera. This is achieved by stabilizing the camera images,
warping the depth image according to the estimated pose of



Fig. 11. Recognition of the right hand gesture triggers the caption of an
image.

the quadrocopter. As a result, existing person trackers such as
the OpenNI framework, which in their original form require
the camera to be static, become applicable and provide the
full body pose. This allowed us to implement gesture control
including to follow a person, taking a picture, and landing
when given a hand sign. While our current approach is
limited to indoor environments, and relies on an external
ground station, we plan to extend it for outdoor use on a fully
autonomous quadrocopter that solely relies on monocular or
stereo cameras. We believe that using quadrocopters as flying
companions bears a large potential for practical application
in the future.
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