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Abstract. Human intelligence consists largely of the ability to recognize
and exploit structural systematicity in the world, relating our senses si-
multaneously to each other and to our cognitive state. Language abilities,
in particular, require a learned mapping between the linguistic input and
one’s internal model of the real world. In order to demonstrate that con-
nectionist methods excel at this task, we teach a deep, recurrent neural
network—a variant of the long short-term memory (LSTM)—to ground
language in a micro-world. The network integrates two inputs—a visual
scene and an auditory sentence—to produce the meaning of the sen-
tence in the context of the scene. Crucially, the network exhibits strong
systematicity, recovering appropriate meanings even for novel objects
and descriptions. With its ability to exploit systematic structure across
modalities, this network fulfills an important prerequisite of general ma-
chine intelligence.
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1 Introduction

An essential aspect of human intelligence is the ability to recognize and ex-
ploit key structural relations between the different modalities of our experience,
from our most basic senses all the way up to the most abstract of cognitive
representations. Language is one of the clearest examples of the importance of
recognizing cross-sensory structural relations. When learning the verb “give” in
English, for example, children recognize the correspondence between what they
see during give-events—generally a giver, a gift, and a recipient—and the three
noun phrases they hear near “give” in the speech stream [1]. Language is also
the domain of the most widely known litmus test for a general machine intelli-
gence, the Turing Test [2]. Though Turing argued convincingly that this is the
same test we unconsciously require of other humans on a daily basis, Searle fa-
mously questioned it in his Chinese Room thought experiment [3], from which
he concluded that understanding cannot follow from symbol manipulation alone.
Indeed, for a system to exhibit what we call “understanding”, it needs to be able
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to relate its symbols to something: to ground them in sensations of the external
world [4]. Our view is that, without this level of language understanding, it is
hard to believe that any system could pass the Turing Test.

With this in mind, we focus on the problem of learning grounded language as
a step on the road to general machine intelligence. We present a deep, recurrent
neural network—a variant of the long short-term memory LSTM [5, 6]—that
learns a grounded version of a micro-language by relating it to a micro-world.
We choose to use a neural network because neurobiology provides the only known
working example of general intelligence. That said, our network is not meant to
be a veridical model of any part of the human brain. However, to leave the door
open to future extensions in that direction, we attempt to maintain a reasonable
degree of neurobiological plausibility.

Our neural network experiences visual scenes and, upon hearing a sentence
relating to a scene, reconstructs the meaning of the speaker in terms of the ob-
jects it sees. Stated a different way, the network identifies the intended referents
and relations described in a natural language sentence. The network naturally
learns to segment morphemes, words, and phrases in the auditory input; to con-
struct, maintain, and query a working-memory representation of the visual scene;
and to map singular and plural noun phrases onto one or more referents. Finally
and most importantly, the network behaves systematically, generalizing not only
to novel scene-sentence pairs, but to individual objects and descriptions never
before seen or heard.

2 Background

2.1 Systematicity

For decades researchers have debated the question of what constitutes system-
atic behavior in neural networks. Hadley [7] introduced a graded definition of
systematicity for language tasks based on the level of input novelty that a lan-
guage processing system can correctly handle. Since we are primarily interested
in the grounding of language, below we define levels of systematicity similar
to Hadley’s, but based explicitly on a system’s ability to pick out appropriate
referents for descriptions in a sentence:

1. Weak systematic grounding: The system can label familiar objects in novel
scenes using familiar object descriptions.

2. Categorical systematic grounding: The system can label novel objects in a
scene using familiar descriptions; this is tantamount to categorizing the new
objects.

3. Descriptive systematic grounding: The system can use novel descriptions to
label familiar objects in a scene.

4. Strong systematic grounding: The system can use novel descriptions to label
objects it has never previously encountered.
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We will demonstrate that the network presented in this paper exhibits strong
systematic grounding of the language it learns. We next turn to previous models
of grounded language learning with neural networks, illustrating the level of
systematicity that each has demonstrated.

2.2 Past Neural Network Models of Grounded Language Learning

Feldman and colleagues [8] famously challenged the cognitive science community
to create a model of language grounded in visual sensation, and many models
have addressed this task during the last two decades. We wish, for reasons of
neurobiological faithfulness, to focus only on those using purely connectionist
methods, rather than hybrid connectionist-symbolic [9] or other types of models.
While many of the following connectionist models are impressive, we argue that
they fall short of achieving the systematicity required for mastery of language.

Riga, Cangelosi, and Greco [10] advanced a neural network model, utiliz-
ing both supervised and unsupervised components, that learned to describe
two-dimensional images with combinations of words. The model shows evidence
of categorical systematicity by recognizing and labeling novel images; however,
there is no evidence that the model can use novel combinations of descriptors
for a given image. The model is limited to scenes consisting of single objects
and static noun-phrase-like bit-vector descriptions, having not been designed to
handle natural language in the temporal domain or at the level of sentences.

Williams and Miikkulainen [11] presented the GLIDE model, consisting of
two self-organizing maps [12] that learned visual and linguistic representations
of the input and then mapped them to each other. Using subjective scoring to
rate the appropriateness of the model’s answers, the authors found it to perform
poorly on novel scenes and descriptions compared to familiar ones, and thus we
cannot conclude that it is strongly systematic in its grounding abilities.

Frank, Haselager, and Rooij [13] developed a model based on a Simple Re-
current Network (SRN) [14] that learned to map temporal sequences of words
representing an event onto a “situation vector” designed to analogically represent
the possible states of the world. The authors claimed that their model fulfills
Hadley’s [7] definitions for semantic systematicity. However, interpreting the
outputs produced by the model was a complex task, and often led to puzzling
situations where the network appeared to simultaneously entertain contradic-
tory beliefs about the world. As such, the level of systematicity of its language
grounding is at least questionable, although we find it to be the most impressive
model to date.

3 Methods

3.1 Task Description

Our network learns to ground a natural micro-language—a subset of English—in
terms of a micro-world. Given input streams representing a visual scene and an
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auditory sentence, the network should combine these streams in order to create
an output representation of the intended meaning of the speaker. By way of
explaining the task, we will describe each of the streams of information that the
network must integrate: the scene represented by the visual stream, the sentence
represented by the auditory stream, and the grounded meaning represented by
the intention stream.

Scenes, Objects, and the Visual Stream On each trial, the network receives
a randomly generated scene as input. A scene consists of a collection of objects
and their attributes, which include shape, color, and size. Scene objects are
presented to the network as neural activity patterns, but for clarity in the text
we denote scene objects in a fixed-width font enclosed in square brackets, as
[small blue pyramid]. Each object is a combination of two neural activity
patterns, the first consisting of a localist representation of the object’s attribute
values and the second being a localist unique identifier for the object. The latter
allows the network to discriminate between objects that otherwise have identical
attributes, allowing the scene to contain [large red block 1] and [large red

block 2] simultaneously while allowing the network to transparently refer to
either.

The neural activity patterns—representing the objects in the scene—are pre-
sented to the visual input layer of the network in a temporal sequence which we
call the visual stream. During training, the network’s visual pathway must learn
to create distributed representations that can simultaneously encode several ob-
jects, maintaining the bindings between individual objects and their (likely over-
lapping) attributes.

Since it is not our intention to precisely model human visual sensation and
perception, we do not concern ourselves with providing a retinotopic represen-
tation of the visual stream. Instead, we assume that something like our scene
representation could be constructed by higher-level visual regions in response
to sensory input. We present a scene’s objects as a temporal sequence in part
because it allows us to vary the number of objects presented while using the
same weight set to process each.

Sentences, Phonemes, and the Auditory Stream After experiencing the
visual stream, the network hears a sentence that describes some aspects of the
scene. Sentences are generated from a simple, mildly context-sensitive grammar
(Figure 1) that describes objects from the scene and relations between them.
Using the grammar, a [small blue pyramid] could be described as a “small
blue pyramid”, a “blue pyramid”, a “small pyramid”, or simply a “pyramid”.
Notably, the grammar allows plural references to groups of objects, such that
our pyramid from above might be grouped with a [small green cylinder]

to be collectively described as the “small things” because of their one common
attribute.

Each word in the sentence is transcribed into a sequence of phonemes; these
sequences are then concatenated, creating a single uninterrupted sequence of
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S → NP VP
NP → the [Size] [Color] Shape
VP → Is Where | Is Color | Is Size
Is → is | are (as appropriate for subject)

Where → on NP | under NP | near NP
Size → small | medium | large

Color → red | blue | green
Shape → things | pyramid | pyramids | block | blocks | cylinder | cylinders

Fig. 1. The grammar used to generate the sentences. Terminals begin with a lowercase
letter while non-terminals are in boldface and begin with an uppercase letter. The
symbol | separates alternative derivations, and terms in brackets are optional. The
evaluation chosen for the Is nonterminal depends on the plurality of its subject.

phonemes representing the entire sentence. Each phoneme in such a sequence is
input to the network as a neural activity pattern representing phonetic features
[15]. Since we are not trying to model the entire auditory pathway, we take it
as granted that feature-based phonetic representations similar to the ones used
here are available at some level in the human auditory system.

These patterns—representing the phonemes in the sentence—are presented
at the auditory input layer of the network as a temporal sequence which we call
the auditory stream. During training, the auditory pathway must simultaneously
learn to segment the auditory stream into morphemes and words, pay attention
to the syntactic relations between these elements, and discover the cues that
identify objects and relations.

Meanings, Predicates, and the Intention Stream After receiving both
the visual and auditory streams, the network is tasked with constructing the
sentence’s meaning in the context of the scene. To do this, the network must
generate a sequence of predicates—as activity patterns over its output layer—
which we call the intention stream.

Each predicate in the intention stream corresponds to an attribute or relation
mentioned in the sentence. We denote predicates using a fixed-width font en-
closed in parentheses, distinguishing them from the square-bracketed visual ob-
jects. If a sentence refers to the visual object [small red cylinder 2] as “small
cylinder”, the network must produce the predicates (small 2) and (cylinder

2), but not (red 2) since this attribute was not mentioned. If a sentence states
that a “blue block” (referring to visual object 3) is “under” our small cylinder,
the network must output the predicate (under 3 2). It may be that some ob-
jects in the scene, or even most of them, are not referenced in the sentence that
accompanies it. In this case, these objects can be considered distractor stimuli,
and while they are present in the visual stream input, they are not included in
the target intention stream.

After a training trial, the network is shown the target intention stream. Com-
paring this behavior to that of a human language learner, we must assume that
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the learner can, at least sometimes, derive the speaker’s meaning from other
sources—a task at which language learners seem to excel [16]—and that this
meaning is available in something resembling a propositional form.

A Complete Example Trial Figure 2 describes an input scene, consisting
of four objects, and an input phoneme sequence for the sentence “The small
pyramids are on the blue block”. A correct intention stream for these inputs
must contain predicates denoting the objects numbered 1 and 2 as the “small
pyramids”. The intention stream should indicate object 4 as the referent of
“the blue block”, containing predicates at the end of the sequence matching
these two attributes with the appropriate object identifier. For the relation “on”,
the intention stream must contain a predicate representing the (on) relation,
indicating that objects 1 and 2, the pyramids, are on object 4, the block.

Visual Stream Auditory Stream Intention Stream

[small red pyramid 1]

[large blue block 4]

[medium red cylinder 3]

[small green pyramid 2]

“The small pyramids are
on the blue block”

(small 1+2)

(pyramid 1+2)

(on 1+2 4)

(blue 4)

(block 4)

Fig. 2. An example trial. Stream elements are depicted in human-readable form, but
are presented to the network as sequences of neural activity patterns representing
objects, phonemes, and predicates.

3.2 Network Architecture

The neural network that learns our grounding task is a generalized long short-
term memory (LSTM-g) [17], which is an extension of the long short-term mem-
ory (LSTM) network [5, 6]. LSTM uses stateful self-connected neural units called
memory cells, which are allowed to have multiplicative input, output, and forget
gates. LSTM-g is a formulation of LSTM that gains the ability to accommodate
arbitrary multi-level network architectures without altering the learning rules.

Though the network is trained by gradient descent, and thus utilizes back-
propagated error signals, we believe that the overall architecture is not as far
removed from biological plausibility as one might expect. Specifically, it has been
recently discovered that the gradient descent training method is essentially a
convenient implementation of contrastive Hebbian learning [18], the latter being
the main ingredient in biologically realistic neural training algorithms such as
Leabra [19]. The fact that memory cells in LSTM maintain their state across
time steps actually makes them resemble real, stateful neurons more closely than
traditional stateless neural elements. Finally, the multiplicative functions of gate
units in LSTM have close neurobiological correlates, and similar mechanisms
have been used in models of the prefrontal cortex and basal ganglia [20].
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The specific network architecture we use to learn our grounding task is de-
picted in Figure 3. Visual processing begins at the lower-right input layer and
auditory processing at the lower-left, proceeding through one or two internal
layers of self-recurrent LSTM memory cells, respectively, before integration at
the final internal layer. We use two layers in the auditory pathway because the
task involves multiple levels of auditory segmentation, with the first layer trans-
forming phonemes into morphemes and words, which in the second layer become
phrases. Previous experiments on learning ungrounded language representations
[17] show that a two-layer pathway outperforms a single-layer pathway. To as-
sist in the production of output sequences, the last internal layer has a recurrent
connection from the previous time-step’s output.

Phoneme Features (34) ID (4)Object Attributes (14)

ID (4)Object Attributes (14) ID (4)Relation (2)

(80)

(80) (80)

(80)

Auditory Stream Visual Stream

Intention Stream

Fig. 3. The architecture of the network. Boxes represent layers of units (with number
of units in parentheses) and arrows represent banks of trainable connection weights.

3.3 Experimental Evaluation

We train our network in four different ways, evaluating it on sets of test sentences
that probe the different levels of grounding systematicity from Section 2.1. In
what follows, an object or description is considered novel if it consists of a
combination of features (e.g. [large red pyramid]) or words (e.g. “large red
pyramid”) that does not occur in the training set.

1. Weak condition: The set of scene-sentence pairs is partitioned at random
with 10% reserved for testing. While test pairs are novel, the individual
objects and descriptions are likely familiar to the network.

2. Categorical condition: One specific type of object is never present in scenes
during training. The network is tested in situations where this novel object
is given a familiar description.
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3. Descriptive condition: One specific type of object, while allowed to be present
in the scenes, is never described fully. We test the network on scenes contain-
ing this familiar object and sentences containing the full, novel description.

4. Strong condition: One type of object is never described and never appears in
scenes. We test the network on inputs where this novel object appears and
is referenced using a novel description.

We train 10 fresh networks in each of the above conditions. Individual units
in different layers are connected with a probability of 0.7, leading to networks
with approximately 60 thousand trainable weights. The learning rate is 0.01.
Each network is allowed to train on 3 million randomly selected scene-sentence
pairs from its training set.

For each training trial, we generate random scenes consisting of two, three,
or four distinct objects, with uniform probability. We then use the grammar to
generate a random sentence describing the scene. Over half a million distinct
scenes are possible, each giving rise to, on average, 36 possible grammatical
sentences. Since inputs, especially simple ones, are often repeated, the network
sees a very small fraction of the input space during training. For each pair of
test inputs, the network must produce the correct intention stream, consisting
of a temporal sequence of 2 to 7 predicates.

4 Results

Figure 4 compares network accuracy across conditions. The ten networks in the
weak condition produced correct meanings for, on average, 95% of novel scene-
sentence pairs, while those in the categorical, descriptive, and strong conditions
were 93%, 93%, and 97% accurate, respectively. The networks clearly pass all of
our systematicity tests on the grounding task.

Comparing the conditions, we observed a significant difference in performance
only between the descriptive and strong conditions on a Welch two-sample t-test
(t ≈ −3.2, df ≈ 17.5, p < 0.01). We think this has to with an (intentional)
asymmetry in the descriptive condition’s training set. The network, observing
27 different visual objects but only 26 complete auditory object descriptions,
is slightly impaired by this structural asymmetry. By contrast, in the strong
condition, the scenes and sentences maintain their structural symmetry, with 26
visual objects corresponding to 26 complete auditory descriptions.

It is worth noting that the network had far more trouble with the ground-
ing part of the task—that is, selecting the referents for the various object
descriptions—than it had with parsing the linguistic descriptions themselves.
When scoring on accurate recognition of linguistic descriptions and ignoring
referents, trained networks produced, on average, less than one error per 1000
sentences. While trained networks produced the correct referent for 98% of noun
phrases—with their accuracy varying inversely with the number of objects in
the scene and the number of referents in the sentence, as one might expect—it
also took them much longer to reach this accuracy level. A typical network re-
quired only the first quarter of its training time to reach ceiling when recognizing
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Fig. 4. The percentage of completely correct intention streams recovered from random
samples of 100 test-set sentences, averaged over 10 trials in each of the conditions.
The small dots represent the performance of individual networks in a condition, and
large dots represent overall condition means. The error bars denote the 95% confidence
intervals on the condition means.

linguistic descriptions, at which point it was identifying referents correctly only
80% of the time, a figure which slowly improved for the duration of training.
That referents are so much more difficult to identify than object attributes and
relations only underscores the difficulty of the language grounding task.

The network appears to scale well to larger scenes, with overall accuracy
decreasing nominally as we increase the maximum number of objects in the scene
to five or six—causing the number of possible scenes to exceed 400 million—while
keeping the number of trainable weights constant.

5 Discussion

The results in the previous section demonstrate that the network uses grounded
language systematically. We are currently analyzing the network’s learned in-
ternal representations in hopes of providing a detailed explanation of how they
support this systematic behavior. A key question will be whether these learned
representations can be viewed as classical symbols (in some meaningful sense of
the term) or are of a fundamentally different nature.

While we suggest that our network provides one the best demonstrations of
strongly systematic, grounded language learning to date, we realize that it is
still a long way from a general machine intelligence. However, we believe that
it provides compelling evidence that connectionist methods excel at something
essential to general intelligence: the ability to recognize and exploit structural
systematicity in the environment across sensory modalities, relating the senses
simultaneously to each other and to what we might call the internal, cognitive
world. We are convinced that what we colloquially refer to as “intelligence”
consists largely of the ability to discover systematicity, whether at the most
basic level of our senses or at the highest levels of cognitive abstraction. Our
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hope is that future work in this vein will shed light on how human intelligence
is implemented in vivo while simultaneously bringing us closer to recreating it
in silico.
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