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The syntactic topic model (STM) is a Bayesian nonparametric model of language that discovers
latent distributions of words (topics) that are both semantically and syntactically coherent. The
STM models dependency parsed corpora where sentences are grouped into documents. It assumes
that each word is drawn from a latent topic chosen by combining document-level features and the
local syntactic context. Each document has a distribution over latent topics, as in topic models,
which provides the semantic consistency. Each element in the dependency parse tree also has a
distribution over the topics of its children, as in latent-state syntax models, which provides the
syntactic consistency. These distributions are convolved so that the topic of each word is likely
under both its document and syntactic context. We derive a fast posterior inference algorithm
based on variational methods. We report qualitative and quantitative studies on both synthetic
data and hand-parsed documents. We show that the STM is a more predictive model of language
than current models based only on syntax or only on topics.

When we read a sentence, we use two kinds of reasoning: one for understanding its
syntactic structure and another for integrating its meaning into the wider context of other
sentences, other paragraphs, and other documents. Both mental processes are crucial,
and psychologists have found that they are distinct. A syntactically correct sentence that
is semantically implausible takes longer for people to understand than its semantically
plausible counterpart (Rayner et al. 1983). Furthermore, recent brain imaging experiments
have localized these processes in different parts of the brain (Dapretto and Bookheimer
1999). Both of these types of reasoning should be accounted for in a probabilistic model
of language.

To see how these mental processes interact, consider the following sentence from a
travel brochure,

Next weekend, you could be relaxing in ____.

How do we reason about filling in the blank? First, because the missing word is the
object of a preposition, it should act like a noun, perhaps a location like “bed,” “school,”
or “church.” Second, because the document is about travel, we expect travel-related
terms. This further restricts the space of possible terms, leaving alternatives like “Nepal,”
“Paris,” or “Bermuda” as likely possibilities. Each type of reasoning restricts the likely
solution to a subset of words, but the best candidates for the missing word are in their
intersection.

In this article we develop a probabilistic model of language that mirrors this process.
Probabilistic modeling has emerged as a powerful formalism for expressing assumptions
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about natural language and analyzing texts under those assumptions (Manning and
Schütze 1999). Current models, however, tend to focus on finding and exploiting either
syntactic or thematic regularities. On one hand, probabilistic syntax models capture how
different words are used in different parts of speech and how those parts of speech are
organized into sentences (Charniak 1997; Collins 2003; Klein and Manning 2002). On the
other hand, probabilistic topic models find patterns of words that are thematically related
in a large collection of documents (Blei et al. 2003; Griffiths et al. 2007).

Each type of model captures one kind of regularity in language, but ignores the
other kind of regularity. Returning to the example, suppose that the correct answer
is the noun “Bermuda.” A syntax model would fill in the missing word with a noun,
but would ignore the semantic distinction between words like “bed” and “Bermuda.”1

A topic model would consider travel words to be more likely than others, but would
ignore functional differences between words like “sailed” and “Bermuda.” To arrive at
“Bermuda” with higher probability requires a model that simultaneously accounts for
both syntax and theme.

Thus, our model assumes that language arises from an interaction between syntactic
regularities at the sentence level and thematic regularities at the document level. The
syntactic component examines the sentence at hand and restricts attention to nouns;
the thematic component examines the rest of the document and restricts attention to
travel words. Our model makes its ultimate prediction from the intersection of these two
restrictions. As we will see, these modeling assumptions lead to a more predictive model
of language.

In general, hierarchical Bayesian models of language posit that the observed words
arise probabilistically via hidden structure, such as syntactic structure or thematic
structure. Given a collection of texts, one uses posterior inference to uncover the hidden
structure from the observed language. In topic models, one uncovers thematic patterns;
in syntax models, one uncovers syntactic patterns.

Both topic models and syntax models assume that each word of the data is drawn
from a mixture component, a distribution over a vocabulary that represents recurring
patterns of words. The central difference between topic models and syntax models is
how the component weights are shared: topic models are bag-of-words models where
component weights are shared within a document; syntax models share components
within a functional category (e.g. the production rules for non-terminals). Components
learned from these assumptions reflect either document-level patterns of co-occurrence,
which look like themes, or tree-level patterns of co-occurrence, which look like syntactic
elements. In both topic models and syntax models, Bayesian non-parametric methods
are used to embed the choice of the number of components into the model (Teh et al.
2006; Finkel et al. 2007). These methods further allow for new components to appear
with new data.

In the syntactic topic model (STM), the components arise from both document-level and
sentence-level distributions and therefore reflect both syntactic and thematic patterns in
the texts. This captures the two types of understanding described above: the document-
level distribution over components restricts attention to those that are thematically
relevant; the tree-level distribution over components restricts attention to those that are
syntactically appropriate. We emphasize that rather than choose between a thematic

1 A proponent of lexicalized parsers might argue that conditioning on the word might be enough to answer
this question completely. However, many of the most frequently used words have such broad meanings
(e.g. “go”) that knowledge of the broader context is necessary.
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component or syntactic component from its appropriate context, as is done in the model
of Griffiths et al (2005), components are drawn that are consistent with both sets of
weights.

This complicates posterior inference algorithms and requires developing new
methodology in hierarchical Bayesian modeling of language. However, it leads to a
more expressive and predictive model. In Section 1 we review latent variable models
for topics and syntax and Bayesian non-parametric methods. In Section 2, building
on these formalisms, we present the STM. In Section 2.2 we derive a fast approximate
posterior inference algorithm based on variational methods. Finally, in Section 3 we
present qualitative and quantitative results on both synthetic text and a large collection
of parsed documents.

1. Background: Topics and Syntax

Our approach builds on probabilistic topic models, probabilistic syntactic models, and
Bayesian non-parametric methods. We review these ideas here.

1.1 Probabilistic Topic Models

Probabilistic topic models are hierarchical Bayesian models of text that can be used
to automatically discover a hidden thematic structure in a large collection of other-
wise unstructured documents. Topic models have emerged as a powerful tool for
unsupervised analysis of text (Blei et al. 2003) and have been extended in many
ways, e.g., to authorship (Rosen-Zvi et al. 2004), citation (Mimno and McCallum
2007), sentiment analysis (Blei and McAuliffe 2007; Titov and McDonald 2008), corpus
exploration (Hall et al. 2008), part-of-speech labeling (Toutanova and Johnson 2008),
discourse segmentation (Purver et al. 2006), word sense induction (Brody and Lapata
2009), and word sense disambiguation (Boyd-Graber et al. 2007). Topic models have
also been applied to non-language data, such as images (Li Fei-Fei and Perona 2005),
population genetics (Pritchard et al. 2000), and music (Hu and Saul 2009). There are
several reviews of topic modeling and related literature (Blei and Lafferty 2009; Griffiths
et al. 2007).

Here we will build on latent Dirichlet allocation (LDA) (Blei et al. 2003), which is
often used as a building block for other topic models. The modeling assumptions behind
LDA are made clear through its generative probabilistic process, the imaginary process by
which a document collection is created. LDA posits that there are K topics in a collection,
each of which is a distribution over terms. For each document, LDA first draws a vector
of topic proportions from a Dirichlet distribution and then draws each word from a topic
which is chosen from those proportions. The corpus is associated with a set of topics, and
each document as associated with a random mixture of those topics. In statistics, these
kinds of assumptions are called mixed-membership assumptions (Erosheva et al. 2007).

Analyzing a corpus with LDA amounts to “reversing” this process to compute the
posterior distribution of the topic proportions, topic assignments, and topics conditioned
on the observed documents. Of particular interest are the topics themselves, which
reflect corpus-wide patterns of word co-occurrence, and the topic proportions, which
describe the documents in terms of their constituent topics.2 Notice that LDA ignores the

2 The topics tend to correspond to a psychologically plausible interpretation of the themes that pervade the
documents (Griffiths et al. 2007). Thus, they are called topics.
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Figure 1
This figure introduces the graphical model notation used throughout the paper and illustrates two
models: latent Dirichlet allocation (LDA) and the finite tree with independent children (FTIC). The
rectangular plates denote replication, and the numbers in the lower right denote how often the
variables inside the plate are replicated. Nodes represent random variables; edges indicate possible
probabilistic dependence; shaded variables are observed; unshaded variables are hidden. For LDA
(left), topic distributions τk are drawn for each of the K topics, topic proportions θd are drawn for
each of each of the M documents, and topic assignments zd,n and words wd,n are drawn for each
of the Nd words in a document. For FTIC (right), each state has a distribution over words, τ , and a
distribution over successors, π. Each word is associated with a hidden state zn, which is chosen
from the distribution πzp(n)

, the transition distribution based on the parent node’s state.

order of words within a document but uses the document context to make inferences
about the topics. For example, the term “stock” might have a high probability in both a
financial topic and a culinary topic. But if “stock,” “soup,” and “broth” also appear in the
document, the posterior will likely assign appearances of “stock” to the culinary topic.

Topic models represent a fully probabilistic perspective on techniques like latent
semantic analysis (LSA) (Deerwester et al. 1990) and probabilistic latent semantic analysis
(pLSA) (Hofmann 1999). LSA and pLSA do not embody fully generative probabilistic
processes. By adopting a fully generative model, LDA exhibits better generalization
performance and is more easily used as a module in more complicated models. (Blei et
al. 2003; Blei and Lafferty 2009).

1.2 Probabilistic Syntax Models

LDA is effective at capturing semantic correlations between words, but it ignores
syntactic correlations and connections. The finite tree with independent children model
(FTIC) can be seen as the syntactic complement to LDA (Finkel et al. 2007). As in LDA,
this model assumes that observed words are generated by latent states. However, rather
than considering words in the context of their shared document, the FTIC considers each
word in the context of its sentence as determined by its location in a dependency parse.

The FTIC embodies a generative process over a collection of sentences with given
parses. It is parameterized by a set of “syntactic states,” where each state is associated
with three parameters: a distribution over terms, a set of transition probabilities to other
states, and a probability of being chosen as the root state. Each sentence is generated
by traversing the structure of the parse tree. For each node, draw a syntactic state from
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the transition probabilities of its parent (or root probabilities) and draw the word from
the corresponding distribution over terms. A parse of a sentence with three words is
depicted as a graphical model in Figure 1.

While LDA is constructed to analyze a collection of documents, the FTIC is con-
structed to analyze a collection of parsed sentences. The states discovered through
posterior inference correlate with part of speech labels (Finkel et al. 2007). For LDA the
components respect the way words co-occur in documents. For FTIC the components
respect the way words occur within parse trees.

1.3 Random Distributions and Bayesian non-parametric methods

Many recently developed probabilistic models of language, including those described
above, employ distributions as random variables. These random distributions are
sometimes a prior over a parameter, as in traditional Bayesian statistics, or a latent
variable within the model. For example, in LDA the topic proportions and topics are
random distributions; in the FTIC, the transition probabilities and term generating
distributions are random.

In this section, we review the Dirichlet distribution, a commonly used distribution
of multinomial parameter vectors, and the stick breaking distribution, a distribution on
multinomial parameter vectors with a countably infinite number of components. We will
describe the connection between the stick-breaking distribution and the Dirichlet process
(DP), which is a distribution over arbitrary discrete distributions and a foundational
building block of Bayesian nonparametric methods. These distributions are pivotal to
the STM.

A (K − 1) dimensional Dirichlet distribution is a distribution over finite probability
distributions of K elements. Thus its support is the simplex, non-negative vectors that
sum to one.3 It is parameterized by a mean value ρ, which is a point on the (K − 1)
simplex, and a scalar λ, which controls the variance around the mean. A random variable
drawn from a Dirichlet is denoted θ ∼ Dir(ρλ).

In LDA, for example, the per-document topic proportions are drawn from a
(K − 1) dimensional Dirichlet and the topics themselves are assumed drawn from a
(V − 1) dimensional Dirichlet. (Recall that K is the number of topics and V is the number
of terms in the vocabulary.) In the FTIC, the syntactic states are assumed drawn from a
(V − 1) dimensional Dirichlet, and the transition probabilities between states are drawn
from a (K − 1) dimensional Dirichlet.4

Both the FTIC and LDA assume that the number of latent components, i.e., topics or
syntactic states, is fixed. Choosing this number a priori can be difficult. Recent research
has extended Bayesian non-parametric methods to build more flexible models where
the number of latent components is unbounded and is determined by the data (Teh et al.
2006; Liang and Klein 2007). The STM will use this methodology.

We first describe the stick breaking distribution, a distribution over the infinite
simplex. The idea behind this distribution is to draw an infinite number of Beta random
variables, i.e., values between zero and one, and then combine them to form a vector

3 The dimensionality is (K − 1) rather than K because of the constraint that the vector sum to one.
4 The Dirichlet distribution is a convenient distribution for generating multinomials, but there are other

alternatives that provide different sparsity or correlation patterns. These have proved promising in
limited-data frameworks; the logistic normal prior has been applied to grammar induction (Cohen et al.
2008) and integer programming has been applied to unsupervised part of speech tagging (Ravi and Knight
2009).
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whose infinite sum is one. This can be understood with a stick-breaking metaphor.
Consider a unit length stick that is infinitely broken into smaller and smaller pieces.
The length of each successive piece is determined by taking a random proportion of the
remaining stick. The random proportions are drawn from a Beta distribution,

µk ∼ Beta(1, α),

and the resulting stick lengths are defined from these breaking points,

βk = µk

k−1∏
l=1

(1− µl).

With this process, the vector β is a point on the infinite simplex (Sethuraman 1994). This
distribution is notated β ∼ GEM(α).5

The stick breaking distribution is a size-biased distribution—the probability tends to
concentrate around the initial components. The Beta parameter α determines how many
components of the probability vector will have high probability. Smaller values of α
result in a peakier distributions; larger values result in distributions that are more spread
out. Regardless of α, for large enough k, the value of βk still goes to zero because the
vector must sum to one. Figure 2 illustrates draws from the stick breaking distribution
for several values of α.

The stick-breaking distribution provides a constructive definition of the Dirichlet
process, which is a distribution over arbitrary distributions [Ferguson 1973]. Consider a
base distribution G0, which can be any type of distribution, and the following random
variables

βi ∼ GEM(α) i ∈ {1, 2, 3, . . .}

µi ∼ G0 i ∈ {1, 2, 3, . . .}.

Now define the random distribution

G =

∞∑
i=1

βiδµi
(·)

which places mass βi on the point µi. This is a random distribution because its com-
ponents are random variables, and note that it is a discrete distribution even if G0 is
defined on a continuous space. Marginalizing out βi and µi, the distribution ofG is called
a Dirichlet process (DP). It is parameterized by the base distribution G0 and a scaling
parameter ρ. The scaling parameter, as for the finite Dirichlet, determines how close the
resulting random distribution is to G0. Smaller ρ yields distributions that are further
from G0; larger ρ yields distributions that are closer to G0.6 The base distribution is also
called the mean of the DP because E[G |G0, ρ] = G0. The Dirichlet process is a commonly

5 GEM stands for Griffiths, Engen and McCloskey (Pitman 2002).
6 The formal connection between the DP and the finite dimensional Dirichlet is that the finite dimensional

distributions of the DP are finite Dirichlet, and the DP was originally defined via the Kolmogorov
consistency theorem(Ferguson 1973). The infinite stick breaking distribution was developed for a more
constructive definition (Sethuraman 1994). We will not be needing these mathematical details here.
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Figure 2
Draws for three settings of the parameter α of a stick-breaking distribution (enough indices are
shown to account for 0.95 of the probability). When the parameter is substantially less than one
(top row), very low indices are favored. When the parameter is one (middle row), the weight
tapers off more slowly. Finally, if the magnitude of the parameter is larger (bottom row), weights
are nearer a uniform distribution.

used prior in Bayesian non-parametric statistics, where we seek a prior over arbitrary
distributions (Antoniak 1974; Escobar and West 1995; Neal 2000).

In a hierarchical model, the DP can be used to define a topic model with an
unbounded number of topics. In such a model, unlike LDA, the data determine the
number of topics through the posterior and new documents can ignite previously unseen
topics. This extension is an application of a hierarchical Dirichlet process (HDP), a model
of grouped data where each group arises from a DP whose base measure is itself a
draw from a DP (Teh et al. 2006). In the HDP for topic modeling, the finite dimensional
Dirichlet distribution over per-document topic proportions is replaced with a draw from
a DP, and the base measure of that DP is drawn once per-corpus from a stick-breaking
distribution. The stick-breaking random variable describes the overall prominence of
topics in a collection; the draws from the Dirichlet process describe how each document
exhibits those topics.

Similarly, applying the HDP to the FTIC model of Section 1.2 results in a model where
the mean of the Dirichlet process represents the overall prominence of syntactic states.
This extension is described as the infinite tree with independent children (ITIC) (Finkel
et al. 2007). For each syntactic state, the transition distributions drawn from the Dirichlet
process allow each state to prefer certain children states in the parse tree. Other work
has applied this non-parametric framework to create language models (Teh 2006), full
parsers for Chomsky normal form grammars (Liang et al. 2007), models of lexical
acquisition (Goldwater 2007), synchronous grammars (Blunsom et al. 2008), and adaptor
grammars for morphological segmentation (Johnson et al. 2006).
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2. The Syntactic Topic Model

Topic models like LDA and syntactic models like FTIC find different decompositions of
language. Syntactic models ignore document boundaries but account for the order of
words within each sentence–thus the components of syntactic models reflect how words
are used in sentences. Topic models respect document boundaries but ignore the order
of words within a document–thus the components of topic models reflect how words
are used in documents. We now develop the syntactic topic model (STM), a hierarchical
probabilistic model of language that finds components which reflect both the syntax of
the language and the topics of the documents.

For the STM, our observed data are documents, each of which is a collection of
dependency parse trees. (Note that in LDA, the documents are simply collections of
words.) The main idea is that words arise from topics, and that topic occurrence depends
on both a document-level variable and parse tree-level variable. We emphasize that,
unlike a parser, the STM does not model the tree structure itself and nor does it use any
syntactic labeling. Only the words as observed in the tree structure are modeled.

The document-level and parse tree-level variables are both distributions over topics,
which we call topic weights. These distributions are never drawn from directly. Rather,
they are convolved—that is, they are multiplied and renormalized—and the topic
assignment for a word is drawn from the convolution. The parse-tree level topic
weight enforces syntactic consistency and the document-level topic weight enforces
thematic consistency. The resulting set of topics—the distributions over words that
the topic weights refer to—will be those that thus reflect both thematic and syntactic
constraints. Our model is a Bayesian nonparametric model, so the number of such topics
is determined by the data.

We now describe this model in more mathematical detail. The STM contains topics
(τ ), transition distributions (π), per-document topic weights (θ), and top level weights (β)
as hidden random variables. In the STM, topics are multinomial distributions over a fixed
vocabulary (τk). Each topic maintains a transition vector which governs the topics assigned
to children of parents assigned a given topic (πk). Document weights model how much
a document is about specific topics. Finally, each word has a topic assignment (zd,n) that
decides from which topic the word is drawn. The STM posits a joint distribution using
these building blocks and, from the posterior conditioned on the observed documents,
we find transitions, per-document topic distributions, and topics.

As mentioned, we use Bayesian non-parametric methods to avoid having to set the
number of topics. We assume that there is a vector β of infinite length which tells us
which topics are actually in use (as discussed in Section 1.3). These top-level weights are
a random probability distribution drawn from a stick-breaking distribution. Putting this
all together, the generative process for the data is as follows:

1. Choose global weights β ∼ GEM(α)
2. For each topic index k = {1, . . . }:

(a) Choose topic τk ∼ Dir(σρu)
(b) Choose transition distribution πk ∼ DP(αTβ)

3. For each document d = {1, . . .M}:
(a) Choose document weights θd ∼ DP(αDβ)
(b) For each sentence root node with index

(d, r) ∈ SENTENCE-ROOTSd:
i. Choose topic assignment zd,r ∝ θdπstart

ii. Choose root word wd,r ∼ mult(1, τzr )

8
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(c) For each additional child with index (d, c) and parent with index
(d, p):

i. Choose topic assignment

zd,c ∝ θdπzd,p (1)

ii. Choose word wd,c ∼ mult(1, τzd,n)

This process is illustrated as a probabilistic graphical model in Figure 3.
Data analysis with this model amounts to “reversing” this process to determine the

posterior distribution of the latent variables. The posterior distribution is conditioned
on observed words organized into parse trees and documents. It provides a distribution
over all of the hidden structure—the topics, the syntactic transition probabilities, the
per-document topic weights, and the corpus-wide topic weights.

Because both documents and local syntax shape the choice of possible topics for a
word, the posterior distribution over topics favors topics that are consistent with both
contexts. For example, placing all nouns in a single topic would respect the syntactic
constraints but not the thematic, document-level properties, as not all nouns are equally
likely to appear in a given document. Instead, the posterior prefers topics which would
divide syntactically similar words into different categories based on how frequently they
co-occur in documents.

In addition to determining what the topics are, i.e., which words appear in a topic
with high probability, the posterior also defines a distribution over how those topics are
used. It encourages topics to appear in similar documents based on the per-document
topic distributions θ and encourages topics to appear in similar similar local syntactic
contexts based on the transition distribution π. For each word, two different views of
its generation are at play. On one hand, a word is part of a document and reflects that
document’s themes. On the other hand, a word is part of a local syntactic structure and
reflects the likely type of word that is associated with a child of its parent. The posterior
balances both these views to determine which topic is associated with each word.

Finally, through the stick-breaking and DP machinery, the posterior selects the
number of topics that are used. This strikes a balance between explaining the data well
(e.g. reflecting syntax and document-level properties) and not using too many topics, as
governed by the hyperparameter α (see Section 1.3).

As we will see below, combining document-level properties and syntax (Equation 1)
complicates posterior inference (compared to HDP or ITIC) but allows us to simultane-
ously capture both syntactic and semantic patterns. Under certain limiting assumptions,
the STM reduces to the models discussed in Section 1 . The STM reduces to the HDP if
we fix π to be a vector of ones, thus removing the influence of the tree structure. The
STM reduces to the ITIC if we fix θ to be a vector of ones, removing the influence of the
documents.

2.1 Relationships to Other Work

The STM attempts to discover patterns of syntax and semantics simultaneously. In this
section, we review previous methods to model syntax and semantics simultaneously and
the statistical tools that we use to combine syntax and semantics. We also discuss other
methodologies from word sense disambiguation, word clustering, and parsers that are
similar to the STM.

9
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Figure 3
In this graphical model depiction of the syntactic topic model, the dependency parse
representation of FTIC in Figure 1(b) are grouped into documents, as in LDA in 1(a). For each of
the words in the sentence, the topics weights of a document θ and the parent’s topic transition π
together choose the topic. (For clarity, some of the sentence node dependencies have been grayed
out.) An example of the structure of a sentence is on the right, as demonstrated by an automatic
parse of the sentence “Some phrases laid in his mind for years.” The STM assumes that the tree
structure and words are given, but the latent topics z are not.

While the STM combines topics and syntax using a single distribution (Equation 1),
an alternative is, for each word, to choose one of the two distributions. In such a model,
the topic assignment comes from either the parent’s topic transition πz(d,p) or document
weights θd, based on a binary selector variable (instead of being drawn from a product
of the two distributions). Griffiths et al’s topics and syntax model (2005) did this on the
linear order of words in a sentence. A mixture of topics and syntax in a similar manner
over parse trees would create different types of topics, individually modeling either
topics or syntax. It would not, however, enforce consistency with parent nodes and a
document’s themes. A word need only be consistent with either view.

Rather, the STM draws on the idea behind the product of experts (Hinton 1999),
multiplying two vectors and renormalizing to obtain a new distribution. Taking the
point-wise product can be thought of as viewing one distribution through the “lens” of
another, effectively choosing only words whose appearance can be explained by both.

Instead of applying the lens to the selection of the latent classes, the topics, once
selected, could be altered based on syntactic features of the text. This is the approach
taken by TagLDA (Zhu et al. 2006), where each word is associated with a single tag (such
as a part of speech), and the model learns a weighting over the vocabulary terms for each
tag. This weighting is combined with the per-topic weighting to emit the words. Unlike
the STM, this model does not learn relationships between different syntactic classes and,
because the tags are fixed, cannot adjust its understanding of syntax to better reflect the
data.

There has also been other work that does not seek to model syntax explicitly but
nevertheless seeks to use local context to influence topic selection. One example is the
hidden topic Markov model (Gruber et al. 2007), which finds chains of homogeneous
topics within a document. Like the STM and Griffiths et al, the HTMM sacrifices the
exchangibility of a topic model to incorporate local structure. Similarly, Wallach’s bigram

10



Boyd-Graber and Blei Syntactic Topic Models

topic model (Wallach 2006) assumes a generative model that chooses topics in a fashion
identical to LDA but instead chooses words from a distribution based on per-topic
bigram probabilities, thus partitioning bigram probabilities across topics.

A similar vein of research is discourse-based WSD methods. The Yarowsky algorithm,
for instance, uses clusters of similar contexts to disambiguate the sense of a word in a
given context (Yarowsky 1995; Abney 2004). While the result does not explicitly model
syntax, it does have a notion of both document theme (as all senses in a document
must have the same sense) and the local context of words (the feature vectors used for
clustering mentions). However, the algorithm is only defined on a word-by-word basis
and does not build a consistent picture of the corpus for all the words in a document.

Local context is better captured by explicitly syntactic models. Work such as Lin
similarity (Lin 1998) and semantic space models (Padó and Lapata 2007) build sets of
related terms that appear in similar syntactic contexts. However, they cannot distinguish
between uses that always appear in different kinds of documents. For instance, the string
“fly” is associated with both terms from baseball and entomology.

These syntactic models use the output of parsers as input. Some parsing formalisms,
such as adaptor grammars (Johnson et al. 2006; Johnson 2009), are broad and expressive
enough to also describe topic models. However, there has been no systematic attempt to
combine syntax and semantic in such a unified framework. The development of statistical
parsers has increasingly turned to methods to refine the latent classes that generate the
words and transitions present in a parser. Whether through subcategorization (Klein
and Manning 2003) or lexicalization (Collins 2003; Charniak 2000), broad categories are
constrained to better model idiosyncrasies of the text. While the STM is not a full parser,
it offers an alternate way of constraining the latent classes of terms to be consistent across
similar documents.

2.2 Posterior inference with variational methods

We have described the modeling assumptions behind the STM. As detailed, the STM
assumes a decomposition of the parsed corpus by a hidden semantic and syntactic
structure encoded with latent variables. Given a data set, the central computational
challenge for the STM is to compute the posterior distribution of that hidden structure
given the observed documents, and data analysis proceeds by examining this distribution.
Computing the posterior is “learning from data” from the perspective of Bayesian
statistics.

This posterior distribution, as for many hierarchical Bayesian models, is not tractable
to compute exactly and we must appeal to an approximation. (Developing algorithms
for approximating posterior distributions of complex hierarchical models is an active
research problem in Bayesian statistics and machine learning.) One of the most widely
used approximation techniques for such models is Monte Carlo Markov chain (MCMC)
sampling, where one samples from a Markov chain whose limiting distribution is the
posterior of interest (Neal 1993; Robert and Casella 2004). Gibbs sampling in particular,
where the Markov chain is defined by the conditional distribution of each latent variable,
has found widespread use in Bayesian non-parametric models and topic models (Neal
1993; Teh 2006; Griffiths and Steyvers 2004; Finkel et al. 2007).

MCMC is a powerful methodology, but it has drawbacks. Convergence of the sampler
to its stationary distribution is difficult to diagnose, and sampling algorithms can be
slow to converge in high dimensional models (Robert and Casella 2004). An alternative
to MCMC is variational inference. Variational methods, which are based on related
techniques from statistical physics, use optimization to find a distribution over the latent
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variables that is close to the posterior of interest (Jordan et al. 1999; Wainwright and
Jordan 2008). Variational methods provide effective approximations in topic models and
non-parametric Bayesian models (Blei et al. 2003; Blei and Jordan 2005; Teh et al. 2006;
Liang et al. 2007; Kurihara et al. 2007).

Variational methods enjoy a clear convergence criterion and tend to be faster
than MCMC in high-dimensional problems.7 Variational methods provide particular
advantages over sampling when latent variable pairs are not conjugate. Gibbs sampling
requires conjugacy, and other forms of sampling that can handle non-conjugacy, such as
Metropolis-Hastings, are much slower than variational methods. Non-conjugate pairs
appear in the dynamic topic model (Blei and Lafferty 2006; Wang et al. 2008), correlated
topic model (Blei et al. 2007), and in the STM considered here. Specifically, in the STM
the topic assignment is drawn from a renormalized product of two Dirichlet-distributed
vectors (Equation 1). The distribution for each word’s topic does not form a conjugate
pair with the document or transition topic distributions. In this section, we develop
an approximate posterior inference algorithm for the STM that is based on variational
methods.

Our goal is to compute the posterior of topics τ , topic transitions π, per-document
weights θ, per-word topic assignments z, top-level weights β given a collection of
documents and the model described in Section 2. The difficulty around this posterior is
that the hidden variables are connected through a complex dependency pattern. With a
variational method, we begin by positing a family of distributions of the same variables
with a simpler dependency pattern. This distribution is called the variational distribution.
Here we use the fully-factorized variational distribution,

q(β, z,θ,π, τ |β∗,φ,γ,ν) = q(β|β∗)
∏
k

q(πk|νk)
∏
d

[
q(θd|γd)

∏
n

q(zd,n|φd,n)

]
.

Note that the latent variables are independent and each is governed by its own parameter.
The idea behind variational methods is to adjust these parameters to find the member of
this family that is close to the true distribution.

Following Liang (2007), q(β|β∗) is not a full distribution but is a degenerate point
estimate truncated so that all weights with index greater thanK are zero in the variational
distribution. The variational parameters γd and νz index Dirichlet distributions, and φn
is a topic multinomial for the nth word.

With this variational family in hand, we optimize the evidence lower bound (ELBO), a
lower bound on the marginal probability of the observed data,

L(γ, ν, φ;β, θ, π, τ) =

Eq [log p(β|α)] + Eq [log p(θ|αD,β)] + Eq [log p(π|αP ,β)] + Eq [log p(z|θ,π)]

+Eq [log p(w|z, τ )] + Eq [log p(τ |σ)]− Eq [log q(θ) + log q(π) + log q(z)] . (2)

Variational inference amounts to fitting the variational parameters to tighten this lower
bound. This is equivalent to minimizing the KL divergence between the variational
distribution and the posterior. Once fit, the variational distribution is used as an
approximation to the posterior.

7 Understanding the general trade-offs between variational methods and Gibbs sampling is an open research
question.
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Figure 4
The truncated variational distribution removes constraints that are imposed because of the
interactions of the full model and also truncates the possible number of topics (c.f. the full model
in Figure 3). This family of distributions is used to approximate the log likelihood of the data and
uncover the model’s true parameters.

Optimization of Equation 2 proceeds by coordinate ascent, optimizing each vari-
ational parameter while holding the others fixed. Each pass through the variational
parameters increases the ELBO, and we iterate this process until reaching a local optimum.
When possible, we find the per-parameter maximum value in closed form. When such
updates are not possible, we employ gradient-based optimization (Galassi et al. 2003).

One can divide the ELBO into document terms and global terms. The document
terms reflect the variational parameters of a single document and the global terms reflect
variational parameters which are shared across all documents. This can be seen in the
plate notion in Figure 4; the variational parameters on the right hand side are specific to
individual documents. We expand Equation 2 and divide it into a document component
(Equation A.2) and a global component (Equation C.1), which contains a sum of all the
document contributions, in the appendix.

In coordinate ascent, the global parameters are fixed as we optimize the document
level parameters. Thus, we can optimize a single document’s contribution to the
ELBO ignoring all other documents. This allows us to parallelize our implementation
at the document level; each parallel document-level optimization is followed by an
optimization step for the global variational parameters. We iterate these steps until we
find a local optimum. In practice, several random starting points are used and we select
the variational parameters that reach the best local optimum.

In the next sections, we outline the variational updates for the word-specific
terms, document-specific terms, and corpus-wide terms. This exposition preserves the
parallelization in our implementation and highlights the separate influences of topic
modeling and syntactic models.

2.2.1 Document-specific Terms. We begin with φd,n, the variational parameter that
corresponds to the nth observed word’s assignment to a topic. We can explicitly solve
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for the value of φn which maximizes document d’s contribution to the ELBO:

φn,i ∝ exp

Ψ (γi)−Ψ
(∑K

j=1 γj

)
+

K∑
j=1

φp(n),j

(
Ψ (νj,i)−Ψ

(∑K
k=1 νj,k

))

−
∑
c∈c(n)

ω−1c

K∑
j

γjνi,j∑
k γk

∑
k νi,k

+
∑
c∈c(n)

K∑
j=1

φc,j

(
Ψ (νi,j)−Ψ

(∑K
k=1 νi,k

))
+ log τi,wd,n

 . (3)

(Note that we have suppressed the document index d on φ and γ.)
This update reveals the influences on our estimate of the posterior of a single word’s

topic assignment. In the first line, the first two terms with the Dirichlet parameter γ
show the influence of the document’s distribution over topics; the term with multinomial
parameter φp(n) and Dirichlet parameter ν reflects the interaction between the topic
of the parent and transition probabilities. In the second line, the interaction between
the document and transitions forces the document and syntax to be consistent (this is
mediated by an additional variational parameter ωc discussed in Appendix 4). In the
final line, the influence of the children’s’ topic on the current word’s topic is expressed in
the first term, and the probability of a word given a topic in the second.

The other document-specific term is the per-document variational Dirichlet over
topic proportions γd. Intuitively, topic proportions should reflect the expected number of
words assigned to each topic in a document (the first two terms of equation 4), with the
constraint that γ must be consistent with the syntactic transitions in the document, which
is reflected by the ν term (the final term of Equation 4). This interaction prevents us from
performing the update directly, so we use the gradient (derived in Appendix 2.2.1)

∂L
∂γi

= Ψ′ (γi)

(
αD,iβ

∗ +

N∑
n=1

φn,i − γi

)
−Ψ′

(∑N
j=1 γj

) K∑
j=1

[
αD,jβ

∗ +

N∑
n=1

φn,j − γj

]

−
N∑
n=1

ω−1n

K∑
j=1

φp(n),j νj,i∑N
k 6=j γk −

∑N
k 6=j νj,kγk(∑N

k=1 γk

)2∑N
k=1 νj,k

 (4)

to optimize a document’s ELBO contribution using numerical methods.
Now we turn to updates which require input from all documents and cannot be

parallelized. Each document optimization, however, produces expected counts which
are summed together; this is similar to the how the the E-step of EM algorithms can be
parallelized and summed as input to the M-step (Wolfe et al. 2008).

2.2.2 Global Variational Terms. In this section, we consider optimizing the variational
parameters for the transitions between topics and the top-level topic weights. Note that
these variational parameters, in contrast with the previous section, are more concerned
with the overall syntax, which is shared across all documents. Instead of optimizing a
single ELBO term for each document, we now seek to maximize the entirety of Equation 2,
expanded in Equation C.1 in the appendix.

14



Boyd-Graber and Blei Syntactic Topic Models

The non-parametric models in Section 1.3 use a random variable β drawn from
a stick-breaking distribution to control how many components the model uses. The
prior for β attempts use as few topics as possible; the ELBO balances this desire against
using more topics to better explain the data. We use numerical methods to optimize β
with respect to the gradient of the global ELBO, which is given in Equation C.2 in the
appendix.

Finally, we optimize the variational distribution νi. If there were no interaction
between θ and π, the update for νi,j would be proportional to the expected number of
transitions from parents of topic i to children of topic j (this will set the first two terms of
Equation 5 to zero). However, the objective function also encourages ν to be consistent
with γ (the final term of Equation 5); thus, if γ excludes topics from being observed
in a document, the optimization will not allow transitions to those topics. Again, this
optimization is done using numerical optimization using the gradient of the ELBO,

∂L

∂νi,j
= Ψ′ (νi,j)

αP,j +

N∑
n=1

∑
c∈c(n)

φn,iφc,j − νi,j


−Ψ′

(∑K
k=1 νi,k

) K∑
k=1

αP,k +

N∑
n=1

∑
c∈c(n)

φn,iφc,k − νi,k



−
N∑
n

φn,i
∑
c∈c(n)

ω−1c γj
∑N
k 6=j νi,k −

∑N
k 6=j νi,kγk(∑N

k=1 νj,k

)2∑N
k=1 γk

. (5)

3. Experiments

We demonstrate how the STM works on data sets of increasing complexity. First, we show
that the STM captures properties of a simple synthetic dataset that elude both topic and
syntactic models individually. Next, we use a larger real-word dataset of hand-parsed
sentences to show that both thematic and syntactic information is captured by the STM.

3.1 Topics Learned from Synthetic Data

We demonstrate the STM on synthetic data that resemble natural language. The data were
generated using the grammar specified in Table 1. Each of the parts of speech except for
prepositions and determiners was divided into themes, and a document contains a single
theme for each part of speech. For example, a document can only contain nouns from
a single “economic,” “academic,” or “livestock” theme, verbs from a possibly different
theme, etc. Documents had between twenty and fifty sentences. An example of two
documents is shown in Figure 5.

Using a truncation level of 16, we fit three different non-parametric Bayesian
language models to the synthetic data (Figure 6).8 Because the infinite tree model is
aware of the tree structure but not documents, it is able to separate all parts of speech

8 In Figure 6 and Figure 7, we mark topics which represent a single part of speech and are essentially the lone
representative of that part of speech in the model. This is a subjective determination of the authors, does
not reflect any specialization or special treatment of topics by the model, and is done merely for didactic
purposes.
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Fixed Syntax
S → VP

VP → NP V (PP) (NP)
NP → (Det) (Adj) N (PP)
PP → P NP

P → (“about”, “on”, “over”, “with”)
Det → (“a”, “that”, “the”, “this”)

Document-specific Vocabulary
V → (“falls”, “runs”, “sits”) or

(“bucks”, “climbs”, “falls”, “surges”) . . .
N → (“COW”, “PONY”, “SHEEP”) or

(“MUTUAL_FUND”, “SHARE”, “STOCK”) . . .
Adj → (“American”, “German”, “Russian”) or

(“blue”, “purple”, “red”, “white”) . . .

Table 1
The procedure for generating synthetic data. Syntax is shared across all documents, but each
document chooses one of the thematic terminal distribution for verbs, nouns, and adjectives. This
simulates how all documents share syntax and subsets of documents share topical themes. All
expansion rules are chosen uniformly at random.

surges

PHD_CANDIDATE

that with

GRAD_STUDENT

white this

GRAD_STUDENT

purple about

PROFESSOR

about

PROFESSOR

purple that

surges

PROFESSOR

red

climbs

PROFESSOR

the red

walks

about

SHEEP

evil

falls

over

SHEEP

on

SHEEP

evil with

PONY

on

SHEEP

evil evil

Figure 5
Two synthetic documents with multiple sentences. Nouns are shown in upper case. Each
document chooses a theme for each part of speech independently; for example, the document on
the left uses motion verbs, academic nouns, and color adjectives. Various models are applied to
these data in Figure 6.

successfully except for adjectives and determiners (Figure 6c). However, it ignores the
thematic distinctions that actually divided the terms between documents. The HDP is
aware of document groupings and treats the words exchangeably within them and is
thus able to recover the thematic topics, but it misses the connections between the parts
of speech, and has conflated multiple parts of speech (Figure 6b).

The STM is able to capture the the topical themes and recover parts of speech
(with the exception of prepositions placed in the same topic as nouns with a self loop).
Moreover, it was able to identify the same interconnections between latent classes that
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Figure 6
We contrast the different views of data that are available by using syntactic and semantic topics
based on our synthetic data. Three models were fit to the synthetic data described in Section 3.
Each box illustrates the top five words of a topic; boxes that represent homogeneous parts of
speech have rounded edges and are shaded; and nouns are in upper case. Edges between topics
are labeled with estimates of their transition weight π. If we have neither syntactic nor semantic
topics, we have a unigram (a) model that views words as coming from a single distribution over
words. Adding syntactic topics allows us to recover the parts of speech (c), but this lumps all
topics together. Although the HDP (b) can discover themes of recurring words, it cannot
determine the interactions between topics or separate out ubiquitous words that occur in all
documents. The STM (d) is able to recover both the syntax and the themes.

were apparent from the infinite tree. Nouns are dominated by verbs and prepositions,
and verbs are the root (head) of sentences. Figure 6d shows the two divisions as separate
axes; going form left to right, the thematic divisions that the HDP was able to uncover
are clear. Going from top to bottom, the syntactic distinctions made by the infinite tree
are revealed.

3.2 Qualitative Description of Topics learned by the STM from Hand-annotated Data

The same general properties, but with greater variation, are exhibited in real data. We
converted the Penn Treebank (Marcus et al. 1994), a corpus of manually curated parse
trees, into a dependency parse (Johansson and Nugues 2007). The vocabulary was pruned
to terms that appeared in at least ten documents.

Figure 7 shows a subset of topics learned by the STM with truncation level 32.
Many of the resulting topics illustrate both syntactic and thematic consistency. A few
non-specific function topics emerged (pronoun, possessive pronoun, general verbs, etc.).
Many of the noun categories were more specialized. For instance, Figure 7 shows clusters
of nouns relating to media, individuals associated with companies (“mr,” “president,”
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Figure 7
Topics discovered from fitting the syntactic topic model on the Treebank corpus. As in Figure 6,
parts of speech that aren’t subdivided across themes are indicated and edges between topics are
labeled with estimates of the the transition probability π. Head words (verbs) are shared across
many documents and allow many different types of nouns as possible dependents. These
dependents, in turn, share topics that look like pronouns as common dependents. The
specialization of topics is also visible in plots of the estimates for the per-document topic
distribution θ for the first 300 documents of the Treebank (right), where three topics columns have
been identified. Many topics are used to some extent in every document, showing that they are
performing a functional role, while others are used more sparingly for semantic content.

“chairman”), and abstract nouns related to stock prices (“shares,” “quarter,” “earnings,”
“interest”), all of which feed into a topic that modifies nouns (“his,” “their,” “other,”
“last”).

Griffiths et al (Griffiths et al. 2005) observed that nouns, more than other parts
of speech, tend to specialize into distinct topics, and this is also evident here. In
Figure 7, the unspecialized syntactic categories (shaded and with rounded edges) serve
to connect many different specialized thematic categories, which are predominantly
nouns (although the adjectives also showed bifurcation). For example, verbs are mostly
found in a single topic, but then have a large number of outgoing transitions to many
noun topics. Because of this relationship, verbs look like a syntactic “source” in Figure 7.
Many of these noun topics then point to thematically unified topics such as “personal
pronouns,” which look like syntactic “sinks.”

It is important to note that Figure 7 only presents half of the process of choosing a
topic for a word. While the transition distribution of verb topics allows many different
noun topics as possible dependents, because the topic is chosen from a product of θ and
π, θ can filter out the noun topics that are inconsistent with a document’s theme.

This division between functional and topical uses for the latent classes can also been
seen in the values for the per-document multinomial over topics. A number of topics in
Figure 7(b), such as 17, 15, 10, and 3, appear to some degree in nearly every document,
while other topics are used more sparingly to denote specialized content. With α = 0.1,
this plot also shows that the non-parametric Bayesian framework is ignoring many later
topics.
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Figure 8
After fitting three models on synthetic data, the syntactic topic model has better (lower) perplexity
on all word classes except for adjectives. HDP is better able to capture document-level patterns of
adjectives. The infinite tree captures prepositions best, which have no cross-document variation.
On real data 8(b), the syntactic topic model was able to combine the strengths of the infinite tree on
functional categories like prepositions with the strengths of the HDP on content categories like
nouns to attain lower overall perplexity.

3.3 Quantitative Results on Synthetic and Hand-annotated Data

To study the performance of the STM on new data, we estimated the held out probability
of previously unseen documents with an STM trained on a portion of the dataset. For each
position in the parse trees, we estimate the probability of the observed word. We compute
the perplexity as the exponent of the inverse of the per-word average log probability.
The lower the perplexity, the better the model has captured the patterns in the data.
We also computed perplexity for individual parts of speech to study the differences in
predictive power between content words, such as nouns and verbs, and function words,
such as prepositions and determiners. This illustrates how different algorithms better
capture aspects of context. We expect function words to be dominated by local context
and content words to be determined more by the themes of the document.

This trend is seen not only in the synthetic data (Figure 8(a)), where syntactic models
better predict functional categories like prepositions, and document-only models fail to
account for patterns of verbs and determiners, but also in real data. Figure 8(b) shows
that HDP and STM both perform better than syntactic models in capturing the patterns
behind nouns, while both STM and the infinite tree have lower perplexity for verbs. Like
syntactic models, our model was better able to predict the appearance of prepositions
but also remained competitive with HDP on content words. On the whole, STM had
lower perplexity than HDP and the infinite tree.
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4. Conclusion

In this work, we explored the common threads that link syntactic and topic models and
created a model that is simultaneously aware of both thematic and syntactic influences
in a document. These models are aware of more structure than either model individually.

More generally, this work serves as an example of how a mixture model can support
two different, simultaneous explanations for how the latent class is chosen. Although
this model used discrete observations, the variational inference setup is flexible enough
to support other distributions over the output.

While this work’s primary goal was to demonstrate how these two views of context
could be simultaneously learned, there are a number of extensions that could lead to
more accurate parsers. First, this model could be further extended by integrating a richer
syntactic model that does not just model the words that appear in a given structure but
one that also models the parse structure itself. This would allow the model to use large,
diverse corpora without relying upon an external parser to provide the tree structure.

Removing the independence restriction between children also would allow for
this model to closer approximate the state of the art syntactic models and to be better
distinguish the children of parent nodes (this is especially the problem for head verbs,
which often have many children). Finally, this model could also make use of labeled
dependency relations and lexicalization.

With the ability to adjust to specific document or corpus-based contexts, a parser
built using this framework could adapt to handle different domains while still sharing
information between them. The classification and clustering implicitly provided by the
topic components would allow the parser to specialize its parsing model when necessary,
allowing both sentence-level and document-level information to shape the model’s
understanding of a document.
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Appendix A: Document Likelihood Bound

In this section, we seek to fully expand the likelihood lower bound L first introduced
in Equation 2 by explicitly computing the expectations with respect to the variational
distribution.

First, we expand Eq [log p(z|θ,π)] from Equation 2. Rather than drawing the topic
of a word directly from a multinomial, the topic is chosen from the renormalized point-
wise product of two multinomial distributions. In order to handle the expectation of
the log sum introduced by the renormalization, we introduce an additional variational
parameter ωn for each word via a Taylor approximation of the logarithm to find that
Eq [log p(z|θ,π)] =

Eq

[
log
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For the expectations of π and θ, multinomials that come from Dirichlet distributions,
we employ the fact that differentiating the log normalizer with respect to the natural
parameter gives the expectation of the sufficient statistic for exponential family distribu-
tions (Blei et al. 2003). Doing this for the Dirichlet distribution introduces the digamma
function Ψ, the derivative of the logarithm of the gamma function, in the above equation.

The other terms in the document’s contribution to the overall likelihood bound are
more conventional. Expanding the other expectations gives us

Ld = log Γ
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∗
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−
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Apart from the terms derived in Equation A.1, the other terms here are very similar to
the objective function for LDA. The expectation of the log of p(θ), q(θ), p(z), q(z), and
p(w) all appear in the LDA likelihood bound.

Appendix B: Document-specific Variational Updates

In this section, we derive the updates for all document-specific variational parameters
other than φn, which is updated according to Equation 3.

Because we cannot assume that the point-wise product of of πk and θd sums to one,
we introduced a slack term ωn in Equation A.1; its update is

ωn =
∑
i=1

∑
j=1

φp(n),j
γiνj,i∑K

k=1 γk
∑K
k=1 νj,k

.

Because we couple π and θ, the interaction between these terms in the normalizer
prevents us from solving the optimization for γ and ν explicitly. Instead, for each γd we
compute the partial derivative with respect to γd,i for each component of the vector. We
then maximize the likelihood bound for each γd. In deriving the gradient, the following
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derivative is useful:

f(x) =

N∑
i=1
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This allows us to more easily compute the partial derivative of Equation A.2 with respect
to γi to be
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Appendix C: Global Updates

In this section, we expand the terms of Equation 2 that were not expanded in Equation A.2.
First, we note that Eq [log GEM(β;α)], because the variational distribution only puts
weight on β∗, is just log GEM(β∗;α).

We can return to the stick-breaking weights by dividing each β∗z by the sum of all
of the indices greater than z (recalling that β sums to one), Tz ≡ 1−

∑z−1
i=1 βi. Using this

reformulation, the total likelihood bound, including Equation A.2 as Ld, is then
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3.0.1 Variational Dirichlet for Parent-child Transitions. Like the update for γ, the
interaction between π and θ in the normalizer prevents us from solving the optimization
for each of the νi explicitly. Differentiating the global likelihood bound, keeping in mind
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Equation B.1, gives

∂L
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.
Each of the νi are then maximized individually using conjugate gradient optimization
after transforming the vector to assure non-negativity.

3.0.2 Variational Top-level Weights. The last variational parameter is β∗, which is the
variational estimate of the top-level weights β. Because β∗K is implicitly defined as(

1−
∑K−1
i=0 β∗i

)
, β∗K appears in the partial derivative of β∗ with respect to β∗k for k < K.

Similarly, we must also use implicit differentiation with respect to the stick breaking
proportions Tz , defined above. Taking the derivative and implicitly differentiating βK
gives us
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which we use with conjugate gradient optimization after appropriately transforming the
variables to ensure non-negativity.
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