
 
 

 
Abstract 

 
Manifold learning has been effectively used in computer 

vision applications for dimensionality reduction that 
improves classification performance and reduces 
computational load.  Grassmann manifolds are well suited 
for computer vision problems because they promote 
smooth surfaces where points are represented as 
subspaces.  In this paper we propose Grassmannian 
Sparse Representations (GSR), a novel subspace learning 
algorithm that combines the benefits of Grassmann 
manifolds with sparse representations using least squares 
loss L1-norm minimization for optimal classification.  We 
further introduce a new descriptor that we term Motion 
Depth Surface (MDS) and compare its classification 
performance against the traditional Motion History Image 
(MHI) descriptor.  We demonstrate the effectiveness of 
GSR on computationally intensive 3D action sequences 
from the Microsoft Research 3D-Action and 3D-Gesture 
datasets. 
 

1. Introduction 
Action classification has received considerable attention 

in the past decade, yet it remains challenging because of 
variations in human sizes, shapes, poses, and action 
execution speeds. The recent availability of cost-effective 
depth cameras, such as the Microsoft Kinect sensor, 
provides a significant advantage, as depth images can 
facilitate body posture estimation and action classification.  
Benefits over traditional image sensors include automatic 
background segmentation, limb identification and 
invariance to illumination, color, and texture.   

Shotton et al. [1] used depth data to calculate kinematic 
joint positions using spatial mode distributions along with 
randomized decision forests. Their approach is invariant to 
pose, body shape, and clothing.  Similarly Schwarz et al. 
[2] used 3D cameras to identify points on a human with a 
maximal geodesic distance from the body center of mass, 
along with optical flow to make predictions on joint 
tracking while considering occlusions.  Beyond kinematic 
joint tracking, recent research has extended to 

understanding gestures and actions from depth maps using 
action graphs [3], statistical analysis on actionlets [4], and 
Hidden Markov Models [5] [6].   

Subspace learning and discriminative analysis find an 
efficient low-dimensional representation that improves 
performance and computation time. Principal Component 
Analysis (PCA) has been employed for action 
classification systems such as in [7].  Manifold learning by 
Locality Preserving Projections (LPP) is based on a 
transformation that preserves local neighborhood 
information using adjacency matrices followed by the 
formation of eigen-maps.  LPP has been applied to action 
classification systems including the work of [8].  Linear 
Discriminant Analysis (LDA) was used for action 
classification in [9].   

A recent development based on manifold learning is the 
representation of image sets as low-dimensional linear 
subspaces using Grassmann manifolds.   Data samples 
from the same class are transformed onto a Grassmann 
manifold as a single point.  These groupings or subspaces 
are separated based on their principal angles, which are 
measured through geodesic metrics.  Kernels are 
commonly used to transform these subspaces onto a space 
where metrics, such as Euclidean metric, can be applied.   

There have been recent trends for inter-class clustering 
enhancements on Grassmann manifolds to improve on 
data clustering techniques for efficient classification.  
Turaga et al. [10] embedded action representations on 
Grassmann manifolds and used probability density 
functions to estimate classes using Procrustes and 
Euclidean metrics.  Hasan and Vidal [11] propose using 
mean shift algorithms on Grassmann kernels for data 
clustering.  Shirazi et al. [12] embed Grassmann manifolds 
onto a Hilbert space to minimize clustering distortions.  
Ryosuke et al. [13] present the Grassmann Distance 
Mutual Subspace Method (GD-MSM) and Grassmann 
Kernel Support Vector Machines (GK-SVM), and show 
that incorporating Binet-Cauchy Grassman kernels 
improves the performance of MSM and SVM 
independently.  Park and Savvides [14] combined 
Grassmann kernels into Kernel Principal Component 
Analysis (KPCA). 

Action descriptors are just as important as the methods 
that use them for optimal action classification.    Spatial 
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action descriptors such as Active Shape Models (ASM’s) 
are commonly used to construct human body models for 
human tracking and surveillance [15]. Spatio-temporal 
descriptors incorporate a temporal structure into an action 
representation and include Hidden Markov Model’s 
(HMM’s) [16] and Condition Random Fields [17].  
Motion History Images (MHI’s), proposed by Davis and 
Bobick [18], are temporal templates that are capable of 
describing where motion exists in a scene and how the 
motion evolves over time.  However, MHI’s may not fully 
account for the depth dimension and may not be sufficient 
when comparing actions carried out at different speeds or 
with occlusions which are common in depth images.   

In this paper, we propose Grassmannian Sparse 
Representations (GSR) as a regression framework that 
incorporates the benefits of Grassmann manifolds for class 
separability by principal angles and sparse representations 
using least squares loss L1-norm minimization for optimal 
classification.  We further introduce Motion Depth 
Surfaces as an alternative to MHI’s when processing depth 
data. The remainder of this paper is organized as follows.  
Section 2 describes subspace learning with least squares 
loss and Grassmann manifolds.  Section 3 introduces 
Grassmannian Sparse Representations (GSR) and Section 
4 introduces motion depth surface action descriptors.  
Section 5 presents the experimental setup of GSR for 3D 
action classification.  We conclude the paper in Section 6.   

2. Subspace Learning 

2.1. Grassmann Manifolds 
A manifold is a topological space consisting of surfaces 

embedded in a high dimensional Euclidean space [19].  A 
Grassmann manifold ��,���, is the projective space of �-
dimensional linear subspaces from a Euclidean space ��. 
Figure 1 shows two subspaces representing two classes, 
where each subspace is the span of all within-class unit 
vector representations.  On a Grassmann manifold, a 
subspace is represented as an individual point.   

To map data onto a Grassmann manifold, we begin by 
creating a dictionary 	�×
 of �-samples each of �-
dimensions in space ��.  Next we solve for a unit vector 
representation of each sample in our dictionary.  One 
method for finding the unit vector representation of each 
sample is to represent the dictionary as a product of three 
matrices using the singular value decomposition (SVD) 
theorem, such that: 	�×
 = ��×��×
��
×
 ��� = �, ��� = � 

(1) 

��×� is an orthogonal matrix whose columns are the 
eigenvectors of 		′.  Similarly, �
×
 is the transpose of an 
orthogonal matrix whose columns are the eigenvectors of 

	′	.  The diagonal matrix �×
 contains the square roots 
of the corresponding eigenvalues in descending order.   
 

 
 

Each sample can now be represented as a unit vector ��⃗ �×� with an imposed orthogonality constraint.  
Assuming there are �-classes, each unit vector 
representation can be grouped into an orthonormal matrix ��×�, where � is the number data elements belonging to 
class �.  The span of the orthonormal matrix �, ����(�), 
represents the subspace spanned by the vectors that 
represent a class.  If the columns of � span a vector ��⃗ , 
then ��⃗  can be classified to that subspace (see Figure 1).  
When � = 1, the Grassmann manifold reduces to the real 
projective space of all lines through the origin [10].  From 
this point forward we refer to the ����(�) as � for 
simplicity.   

There are many benefits to using Grassmann manifolds.  
The smooth structure provides a convenient way of 
representing large dictionaries through subspaces.  This 
allows for directly comparing two subspaces, which is 
computationally cheaper than measuring all distances 
between individual elements [20].  Additionally 
Grassmann manifolds fill in missing data through linear 
spans of subspaces.   
 
2.1.1 Projection Kernels and Projection Metrics for 

Classification 
Grassmann manifolds are naturally smooth and curved 

surfaces. The geometrical characteristics and structuring 
of Grassmann manifolds are discussed in [21], [22]. With 
this smooth characteristic, the distance between two 
subspaces is a geodesic distance.  Grassmann kernels 
provide a means to simplify subspace metrics so that 
complex geodesic computations can be avoided.  We 
focus on projection kernels in this paper, and plan to 
explore in the future other Grassmann kernels, such as the 
Canonical Correlations kernel and the Binet-Cauchy 
kernel.   

A projection metric is used to calculate the distance 
between subspaces by measuring the principal angles, � = [��, … , ��].  The principal angle between two 
orthonormal matrices is determined by: 

Figure 1: A subspace mapping from a Euclidean space (left) to a 
Grassmann manifold (right).   
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���� =  "#∈%&'
(*+)��-  .#∈%&'
(*/)��-  � � 0       
    �. 3.  � � � = 1,    0 � 0 = 1,    � � �4 = 0,   0 � 04 = 0  
            (6 = 1, … , 7 − 1) 

(2) 

The principal angle is related to the projection metric by: 

8&(��, �9) = :; �6�9�4
�

4<� >
�9 = :� − ; ���9�4

�
4<� >

�9
 (3) 

This allows for Euclidean distance metrics between two 
subspaces from isometric embeddings.  We can now 
construct a projection kernel using proposition 1 of Hamm 
and Lee [20]: �&?@A(��, �9) = 3B[(�����)(�9�9′) = ‖��′�9‖D9  (4) 

Grassmann kernels, similarly to other kernels, require 
kernel-based methods for classification, because they do 
not define a direct linear relationship between subspaces.  
Thus, kernel-based methods such as PCA or LDA are 
needed for classification, as reported in the work of 
Turaga et al. [10].   

2.2. Sparse Representations 
Sparse representations have been applied towards face 

recognition [23], super-resolution [24], denoising [25], 
and image classification [26].  We begin with a matrix E�×
 = FE�, E9, … , E&G representing an over-complete 
dictionary of n-action samples, each of m-dimensions, 
with p separate action classes. Given a test sample x, a 
linear representation is defined as:  

- = E� (5) 

where ��×
 is a sparse coefficient vector and the smallest 
non-zero coefficient represents the pth action class in the 
linear range.   

�H = arg �6� ‖�‖�  �. 3.  - = E� (6) 

where ‖�‖� = ∑ |�|4 .  L1-norm minimization promotes 
sparse solutions and accounts for outliers [27].  There are 
many methods for L1-norm minimization, and in this 
paper we focus on the least squares loss method with 
regularization: 

�H = arg �6� ‖E� − -‖22 + L‖�‖�  �. 3.  - = E� (7) 

where L is L1-norm regularization parameter which is used 
to achieve sparser solutions.  Regularization provides low 
variance feature selection, improved approximations, and 
more interpretable solutions [28].  

3. Grassmannian Sparse Representations 
We now present the Grassmannian Sparse 

Representations (GSR) framework, which combines 
Grassmannian kernels and sparse representations using 
least squares loss.  The approach is inspired by methods 
such as Grassmann Discriminant Analysis (GDA) [29], 
which uses Grassmann kernels in a discriminant learning 
framework.  Our motivation is to combine computational 
efficiency and smooth class separability, promoted by the 
structure of Grassmann manifolds, with efficient data 
representation promoted by least squares loss.   

We begin by constructing a training projection 
kernel �� of size �� × ��, as a kernel mapping of all data 
elements between each other, where �� is the number of 
training subspaces.  Similarly we construct a testing 
projection kernel �9 of size �� × �9, which maps training 
subspaces to testing subspaces, where �9 is the number of 
testing subspaces.  We introduce kernels into the least 
squares loss function with regularization such that: 

�H = arg �6� ‖��� − �9(6)‖22 + L‖�‖�   
�. 3.  �9 = ���, 6 = [1, … , �9]  (8) 

where �� is the training projection kernel, �9 is the testing 
kernel, � is the coefficient vector, and �9 is number of 
test elements which is equal to the number of testing 
subspaces.  It should be noted that either individual 
elements or a group of elements may be treated as a single 
subspace depending on the application.  The objective 
function in (8) promotes sparse solutions through L1-norm 
minimization, an effective technique for solving 
underdetermined systems of linear equations with outlier 
detection, and promotes class discrimination through 
Grassmannian manifolds. 
 

4. Motion Depth Surface Descriptor 
We propose a new descriptor that is suitable for 

processing depth data, inspired by the work of Davis and 
Bobick [18] on motion history images (MHI’s). The 
following equation expresses the MHI descriptor using a 
decay operator where recent motion appears brighter than 
older motion. 

MN�O(-, P, 3) = Q R  6S E(-, P, 3) = 1max(0, MN�R(-, P, 3 − 1) − T) �. U. (9) 

where E(-, P, 3) is a binary image indicating regions of 
motion, R describes the initial motion response and the 
decay operator is regulated by T.  

We extend this representation by incorporating the 
additional dimension of depth.  Assuming �(-, P, 3) 
represents a depth value at pixel (-, P) for time 3, we 
define a motion depth image (MDI) as follows 
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ME�O(-, P, 3) = Q �(-, P)  6S E(-, P, 3) = 1max(0, ME�R(-, P, 3 − 1) − T) �. U. (10) 

This permits us to capture motion activity in the depth 
direction as well as within a frame.  We combine each 
MDI to create a motion depth surface (MDS) that now 
represents spatio-temporal motion with built-in depth 
motion.  In our results we compare MDS to Motion 
History Surfaces (MHS) constructed using the MHI 
descriptor in (10).  These surfaces were scaled to a fixed 
size to account for variations in the timing of actions and 
to ensure that the number of dimensions of each action 
descriptor remains consistent and its size is manageable.  
An example of a subject executing a punching action 
shows how the direction of depth is incorporated into our 
MDS descriptor is shown in Figure 2.  Similarly, Figure 3 
shows a side by side comparison of an MHS and an MDS 
description of the ASL gesture for Green.   
 

 

 
 

5. Experimental Setup 

5.1. Datasets 
We experimented with two 3D action datasets: the MSR 

Action 3D (MSR3D) and the Microsoft Gesture 3D 
(MGesture3D) datasets. Both datasets are available at 
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/.  

The MSR3D dataset is presented in Li et al [3].  There are 
ten subjects performing twenty actions two to three times 
with a total of 567 depth map sequences.  The dataset 
actions are: high arm wave, horizontal arm wave, hammer, 
catch, tennis swing, forward punch, high throw, draw X, 
draw tick, tennis serve, draw circle, hand clap, two hand 
wave, side boxing, golf swing, side boxing bend, forward 
kick, side kick, jogging, and pick up and throw.  The 
MGesture3D dataset is presented in Kurakin et al. [30].  
There are ten people performing 12 American Sign 
Language (ASL) gestures which represent Z, J, Where, 
Store, Pig, Past, Hungary, Green, Finish, Blue, Bathroom, 
and Milk.  The dataset contains some dead frames and we 
applied interpolation to estimate the values of the dead 
frames between valid frames when applicable.  We present 
an example from each dataset in Figure 4. 

 

 

5.2. Experimental Results 
In our experiments we conducted leave-one-subject-out 

cross validation for both the MSR3D and MSRGesture3D 
datasets. We used all actions and all samples provided 
from the two datasets for our analysis with no exclusions.   

In our first set of experiments, we ran multiple 
classification methods and compared them against GSR on 
both depth datasets using MDS descriptors.  Each MDI 
frame was set to a 25×25 size using bicubic interpolation.  
Dynamic time warping was applied on variable time 
action surfaces to represent each action surface by 40 
frames and support time invariance.  Therefore, each MDS 
has a fixed size of 40×625 dimensions to limit the amount 
of data required for processing.  Using leave-one-subject-
out cross validation, 390 training samples resulted in a 
25,000×390 dictionary for the MSR3D dataset and 300 
training samples resulted in a 25,000×300 dictionary for 
the MSRGesture3D dataset. 

First we applied k-Nearest Neighbors directly on the 
original dictionaries, which was very time consuming 
considering the high dimensionality of the data.  Then we 
considered Principal Component Analysis (PCA), Linear 

Figure 2: A comparison of MHI (top) with MDI (bottom).  MDI 
tracks the motion of depth changes.   

Figure 3: A comparison of MHS (left) with MDS (right) for the 
ASL sign for Green.  

Figure 4: These are samples of action sequences.  The top action 
sequence is from the MSR3D dataset of the tennis serve action.
The bottom action sequence is from the MSRGesture3D dataset 
for the ASL sign for Z. 
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Discriminant Analysis (LDA), and Locality Preserving 
Projections (LPP), each using a k-NN classifier.  Data 
reduction through PCA reduced each training and testing 
sample from 25,000 dimensions down to 50 dimensions.  
Similarly, eigen-decomposition through LDA and LPP 
reduced each training and testing sample from 25,000 
dimensions to just 11 dimensions.   

The results of our experiments are summarized in 
Tables 1-3. PCA performed poorly on both datasets, while 
LDA and LPP performed fairly well and consistently on 
both datasets.  

Table 1 shows the classification accuracies for all 
algorithms based on Motion History Surfaces (MHS) and 
Motion Depth Surfaces (MDS).  We find the MDS 
classifies slightly better than MHS in most cases.     
 
 MSR3D MSRGesture3D 

Algorithm Motion 
History 
Surfaces 

Motion 
Depth 

Surfaces 

Motion 
History 
Surfaces 

Motion 
Depth 

Surfaces 
LPP 76.85% 79.28% 78.57% 79.17% 
PCA 62.26% 63.22% 69.05% 70.83% 
LDA 76.00% 77.10% 81.85% 80.05% 
kNN 66.13% 66.98% 74.41% 71.43% 
SR 

(L=0.075) 
76.83% 79.04% 82.44% 83.63% 

LPP w/ SR 
(L=0.075) 

76.03% 75.48% 73.51% 74.11% 

GSR 
(L=0.075) 

77.98% 78.48% 84.22% 85.42% 

Table 1: A comparison of classification accuracies using Motion 
History Surface and Motion Depth Surface descriptors. LPP, 
PCA, and LDA were used for dimensionality reduction before 
applying a kNN classifier.  kNN classification was also applied 
on the original data.   For SR, LPP with SR, and GSR we use 
minimum reconstruction error [31] for classification.   

 
  
 

MSR3D 
Action3D LL==0 

MSR3D 
Action3D LL==0.075 

MSR 
Gesture3D LL==0 

MSR 
Gesture3D LL==0.075 

SR 78.06% 79.04% 83.33% 83.63% 
LPP 

w/ SR 77.82% 78.45% 73.21% 74.11% 

GSR 77.21% 78.48% 83.33% 85.42% 
Table 2: A comparison of classification accuracies between 
Sparse Representations (SR), Locality Preserving Projections 
with Sparse Representations (LPP w/ SR), and Grassmannian 
Sparse Representation (GSR) on the MSR3D Action 3D and 
MSR Gesture3D datasets.  Each algorithm compares non-
regularized L=0 and 0.075 regularization parameter.   

 
GSR incorporates least squares regression with 

regularization.  The regularization parameter can be 
adjusted to prevent over-fitting and account for noise.  The 
result is an algorithm with good class discrimination 
because Grassmann manifolds are naturally smooth, can 
fill in missing data through linear spanning, and can 
account for outliers and noise with sparse representations 
and regularization.   

We experimented with least squares loss on the original 
high dimensional data as well as on data after applying 
dimensionality reduction using LPP and Grassmann 
learning, as shown in Table 2.  Comparing least squares 
loss with and without regularization shows that 
regularization improves classification accuracies.  All 
results on the MSR3D dataset are comparable, but GSR 
has a slight advantage for the MSRGesture3D dataset, 
especially with regularization.   

The processing time for SR using Least Squares loss 
without any dimensionality reduction was extremely slow, 
and there was no sufficient advantage in classification to 
offset its timing drawback. When comparing classification 
accuracies in Table 2 with execution times for 
classification in Table 3, we observe that GSR and LPP 
with SR are much faster than SR alone.  LPP with SR does 
classify faster than GSR on both datasets, but GSR offers 
a classification accuracy advantage of almost 9% on the 
MSRGesture3D dataset.  Classification accuracies are 
almost identical on the MSR3D dataset.   

 
 

Algorithm 
MSR3D 
Dataset  

Time (sec) 

MSRGesture3D 
Dataset  

Time (sec) 
SR 2,905.06 1,433.35 

LPP w/ SR 31.30 21.27 
GSR 80.17 47.55 

Table 3: A comparison of classification processing times for 
Sparse Representations, LPP with Sparse Representations, and 
Grassmannian Sparse Representations (GSR). All experiments 
were run on a Windows 3.47 GHz Intel Xeon processor.   
 

Figure 5 shows the confusion matrices for all action 
classification results in both 3D datasets.  For the MSR3D 
results, we see that very distinct actions such as waving, 
boxing, and kicking classify very well, while actions such 
as hammer tend to get misclassified with tennis swing and 
tennis serve.  For the MSRGesture3D dataset most 
gestures are identified at a high rate, while Blue was 
commonly confused with Z and J.  It is notable that Blue 
was the gesture with the highest number of dead frames; at 
least two of its samples contained 50% dead frames.  This 
fact contributes to the low classification accuracy on Blue. 

We explored recent literature for comparison of our 
results with other methods that have used the MSR3D and 
MSRGesture3D datasets.  Since the experimental 
methodologies in related works were not identical with 
ours (we used cross-validation and the other papers did 
not), it is difficult to make direct comparisons, but we 
present these results here for reference and completeness.   

Wang et al. [4] extract 3D joint descriptors, form 
actionlets, and use mining algorithms for action 
classification on the MSR3D dataset.  They report 88.2% 
action classification accuracy on MSR3D when training 
on half the subjects and testing with the remaining 
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subjects.  Since cross validation was not applied in the 
experiments of [4], the results cannot be compared directly 
with our results in Tables 1 and 3.  Li et al [3] combine 
action graph descriptors with Bag-of-Words classification.  
They ran experiments on three subsets, each of 8 actions, 
on the MSR3D dataset and randomly select subjects for 
1/3 training, 2/3 testing, 2/3 training, 1/3 testing, and 1/2 
training, 1/2 testing.   They report >90% classification 
accuracies without cross validation and 74.7% when 
applying cross validation.  

Kurakin et al. [30] use action graph classifiers on the 

MSRGesture3D dataset and apply leave-one-subject-out 
cross validation but only on 5 random subjects.  Without 
specifying which subjects, we could not duplicate the 
same experiment.  Wang et al. [32] use random occupancy 
pattern descriptors with sparse coding and report 86.50% 
and 88.50% classification accuracies on the MSR3D and 
MSRGesture3D datasets respectively.  In this experiment 
half the subjects were selected for training and the 
remaining subjects were used for testing.  Again, since no 
cross validation was applied and the subjects were not 
specified we could not duplicate this experiment.  

 
 

   

 
Figure 5: The confusion matrices for action classification in the MSR3D dataset (top) and the MSRGesture3D dataset (bottom).  MSR3D 
classification accuracy is 78.48% and the MSRGesture3D classification accuracy is 85.42%.   
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6. Conclusion 
In this paper we proposed Grassmannian Sparse 

Representations (GSR) and demonstrated its effectiveness 
on 3D action classification. Grassmann manifolds promote 
smooth and curved surfaces that encourage class 
discrimination. Sparse representations through least 
squares loss with regularization promote unique solutions 
while taking outliers into account.  Our results indicate 
that GSR classification accuracies are comparable or 
better than state-of-the-art approaches.  Additionally, we 
introduced a Motion Depth Surface descriptor that offers a 
desirable alternative to the well-known Motion History 
Image descriptor when dealing with depth data.  Future 
work involves investigating distance metrics for improved 
classification with Grassmmann manifolds especially 
when classifying a large number of actions.  We also plan 
to further experiment with the Motion Depth Surface 
descriptor. 
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