Introduction to Robotics

Amitabha Mukerjee IIT Kanpur, India

What is a Robot?

Robot properties:

- Flexibility in Motion
 - Mobile robots

daksh ROV: de-mining robot 20 commissioned in Indian army 2011. 100+ more on order built by R&D Engineers, Pune

daksh platform derived gun mounted robot (GMR)

Want your personal robot?

Roomba vacuum Cleaning robot

By i-robot Price: ~ rs. 15-30K

How to vacuum a space?

Roomba vacuum Cleaning robot

By i-robot Price: ~ rs. 30K

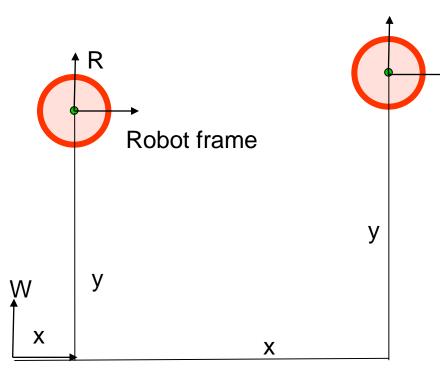
https://www.youtube.com/watch?v=dweVBqei9L

Models of Robot Motion

Circular robot

V W W World Frame (Workspace frame)

Models of Robot Motion

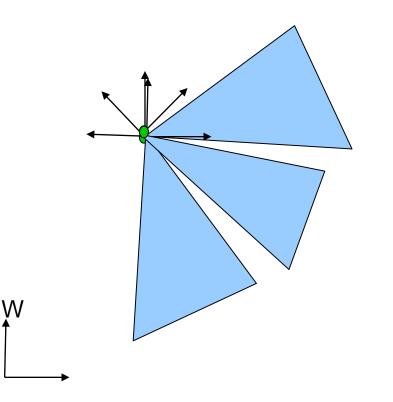


World Frame (Workspace frame) DEFINITION: degree abof frame R, every point on the robot frame R in the world frame W

(x,y) = **configuration** (vector **q**)

given configuration **q** for a certain pose of the robot, the set of points on the robot is a function of the configuration: say R(**q**)

Non-Circular Robot



DEFINITION: degrees of freedom:

number of parameters needed to fix the robot frame R in the world frame W

How many parameters needed to fix the robot frame if it can only translate?

How many if it can rotate as well?

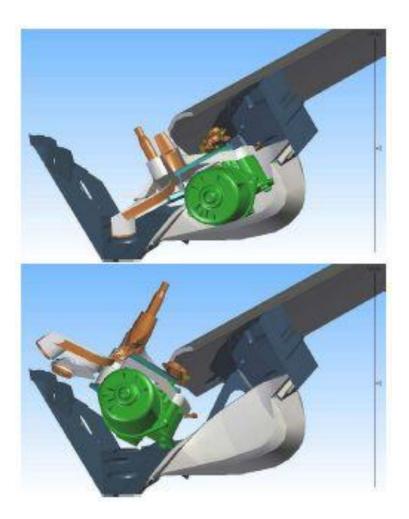
Motion in 3-D: Piano movers problem

General 3D motion:

How many parameters needed to fix the pose?

Can a design be assembled?

Test based on CAD models



Research mobile robot

Turtlebot

Based on i-robot (roomba) platform (with kinect RGB-D sensor)

ROS (open-source) software

Price: ~ 75K

Articulated robots

What is a Robot?

Robots properties:

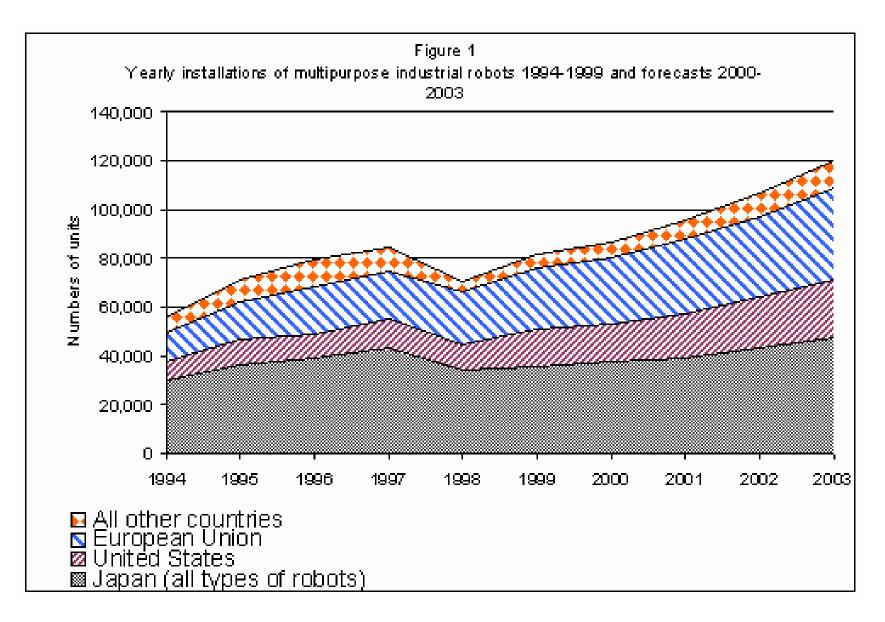
- Flexibility in Motion
 - Mobile robots
 - Articulated robots

SCARA 4-axis arm (4 degrees-of-freedom)

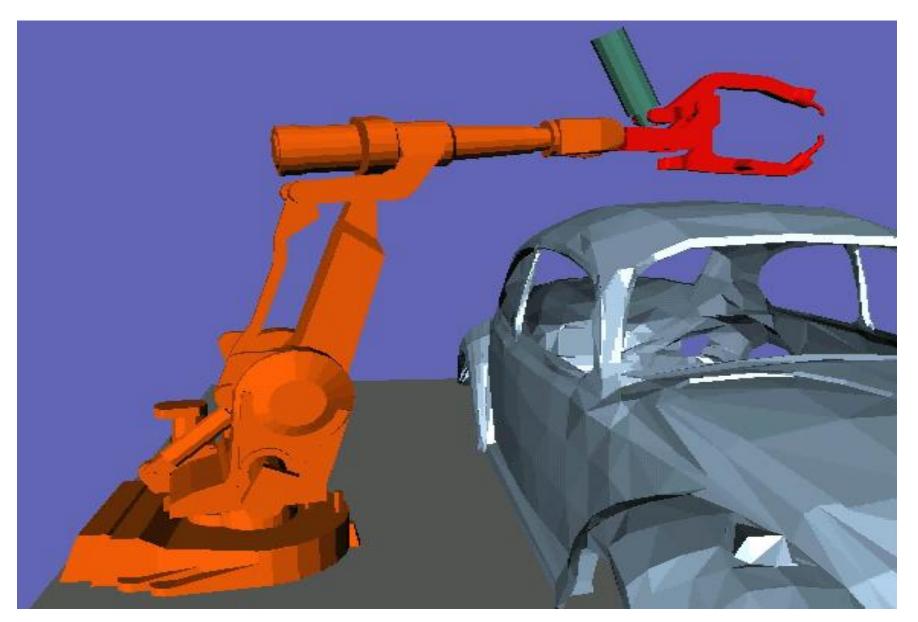
by Systemantics Bangalore

Industrial Robot

Industrial Robots



How to program a welding robot?



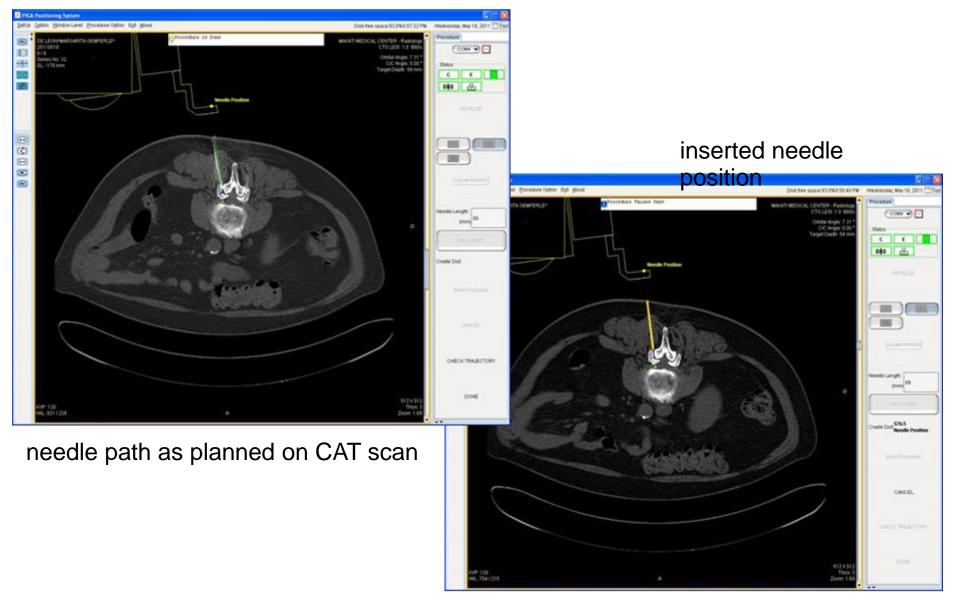
What is a Robot?

Robot properties

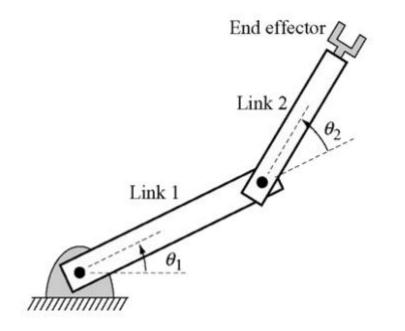
- Flexibility in M
 - Mobile robot
 - Articulated r
 - Industrial r
 - Surgical robots

perfint healthcare, chennai

Surgical Robot : Lumbar biopsy



Modeling Articulated Robots



Kinematic chain:

Pose of Link n depends on the poses of Links 1...(n-1)

Transformation between frame of link (n-1) and link n, depends on a single motion parameter, say θ_n

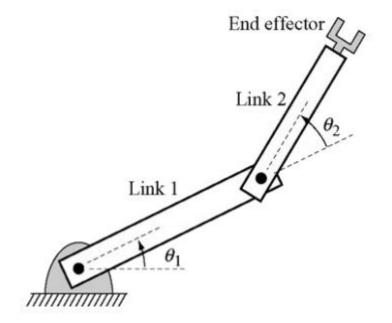
Exercise:

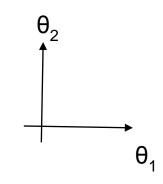
What are the coordinates of the orgin of the end-effector center?

Modeling Articulated Robots

workspace

configuration space





Exercise: Sketch the robot pose for the configuration [0, -90]

Modeling Articulated Robots

Forward kinematics

Mapping from configuration **q** to robot pose, i.e. R(**q**)

Usually, R() is the product of a sequence of transformations from frame i to frame i+1.

Note: Must be very systematic in how frames are attached to each link

Inverse kinematics

a. Given robot pose, find **q**Orb. Given end-effector pose, find **q**

Q. Is the answer in (b) unique?

What is a Robot?

Robots properties

- Flexibility in Motion
 - Mobile robots
 - Articulated robots
 - Digital actors

Reality: limited functionality

Mobility isnt everything

What is a Robot?

Robots involve

- Flexibility in Motion
 - Dentists cradle?
 - Washing machine?
- Intentionality
 - Measure : not default probability distribution
 - e.g. Turn-taking (contingent behaviour)
 - Goal : intrinsic or extrinsic

Robot Motion Planning

Amitabha Mukerjee IIT Kanpur, India

Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun Foreword by Jean-Claude Latombe

Principles of Robot Motion

Theory, Algorithms, and Implementation

indian edition rs 425

Sensing and Motion Planning

[bohori venkatesh singh mukerjee 05] Bohori/Venkatesh/Singh/Mukerjee:2005

Programming a robot



Grasping an offered ball

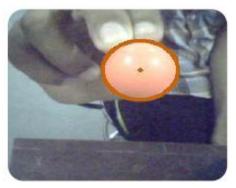
Programming a robot

1. detect ball using colour:

image captured by nao

HSV

binarized



contour detected

Sensing in the workspace

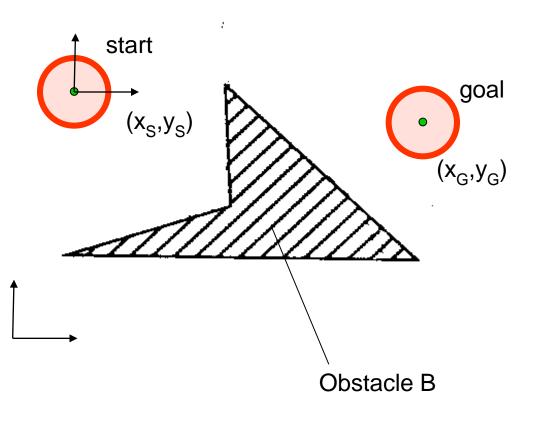
Motion planning in C-space

2. estimate distance of ball (depth) from image size

3. Inverse kinematics to grasp ball

Configuration Space

Robot Motion Planning



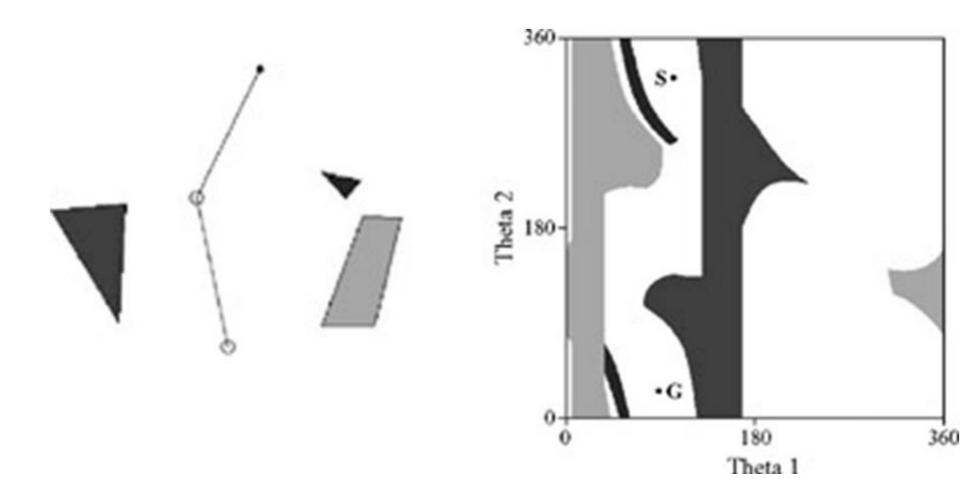
Valid paths will lie among those where the robot does not hit the obstacle

find path *P* from start to goal s.t.

for all *t*, $R(t) \cap B = \emptyset$

How to characterize the set of poses for which the robot does not hit the obstacle B?

Robot Motion Planning



Continuum approaches vs Discretization

Two approaches to Robot motion planning:

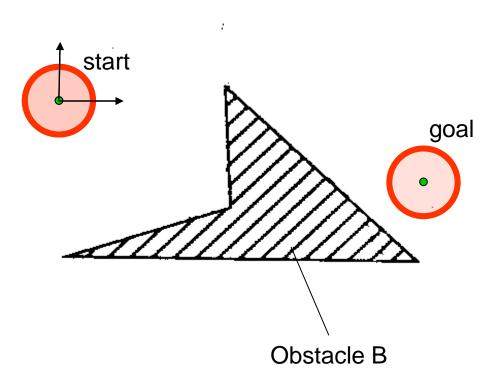
• continuum:

treat motion space as single continuum \rightarrow optimization

• discretization:

decompose motion space into regions / segments → graph-search

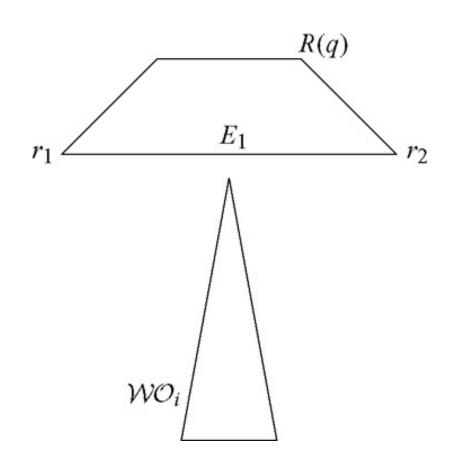
Potential fields



Potential fields

- Goal: negative (attractive) potential Obstacles: positive (repulsive) potential
- 2. Robot moves along gradient
- 3. Problems:
 - need to integrate the potential over the area of robot
 - problem of local minima

Finite area robots



Instead of integrating over robot area, restrict to a set of *control* points

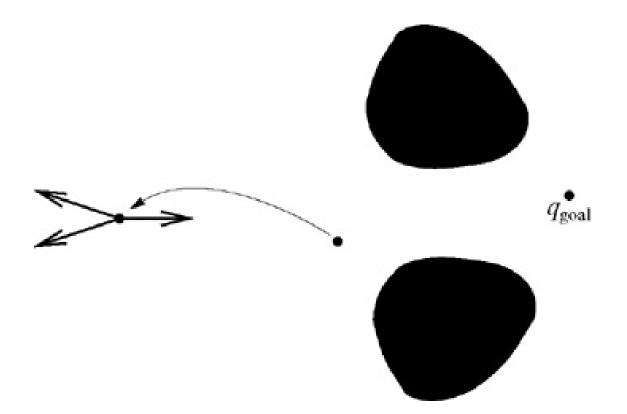
e.g. vertices

Problem:

With control points r1 and r2 on robot R(q), edge E1 may still hit Obstacle.

→ Attempt to reduce computation to points

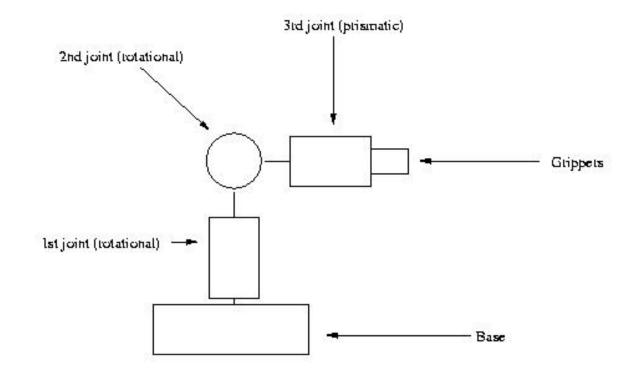
Local Minima



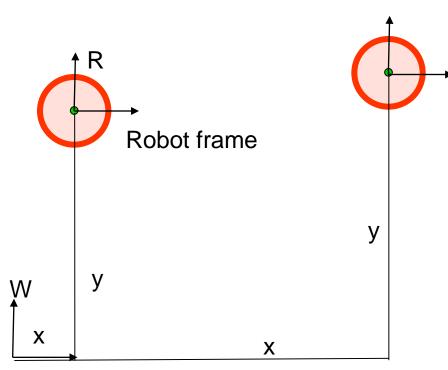
persists even for point robots

Nature of Configuration spaces

Robot Model



Models of Robot Motion



World Frame (Workspace frame)

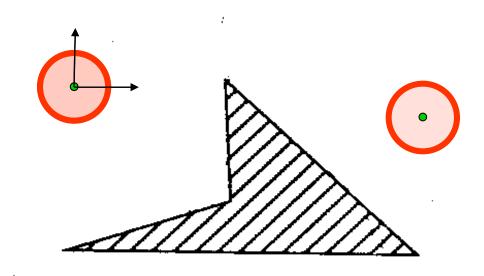
DEFINITION: degrees of freedom:

number of parameters needed to fix the robot frame R in the world frame W

(x,y) = configuration (vector q)

given configuration **q** for a certain pose of the robot, the set of points on the robot is a function of the configuration: say R(**q**)

Robot Motion Planning

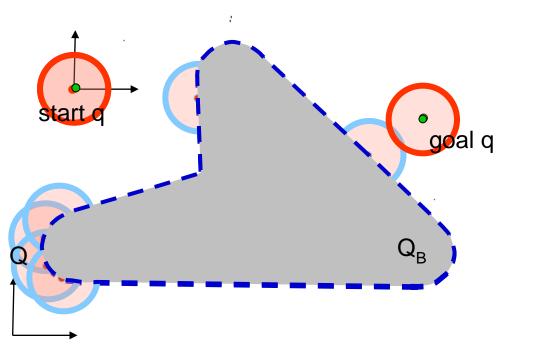


find path P from qS to qG s.t. for all $q \in P, R(q) \cap B = \emptyset$

? generate paths and check each point on every path?

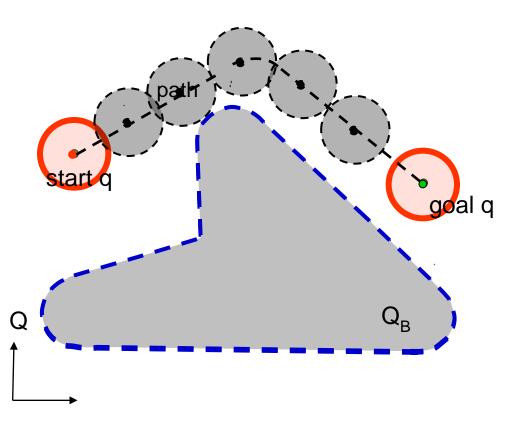
Would it be easier to identify Q_{free} first?

Robot Motion Planning



 $\mathsf{Q}_{\mathsf{B}} = [\mathbf{q} \mid \mathsf{R}(\mathbf{q}) \cap \mathsf{B} \neq \emptyset]$

Motion Planning in C-space

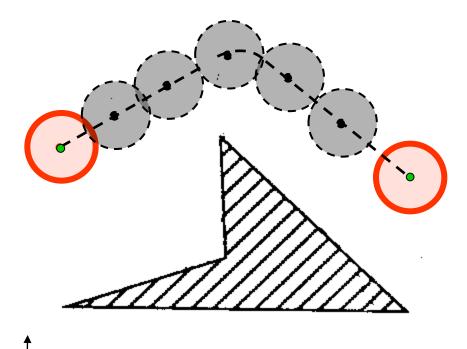


configurations are points in C-space

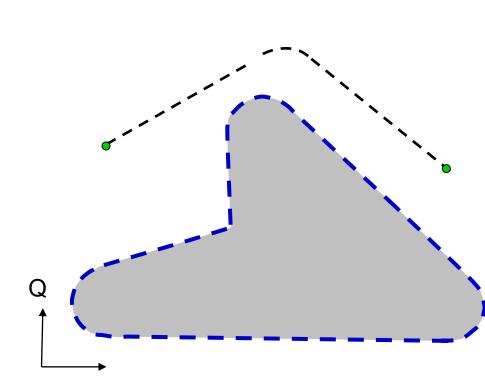
path P is a line

if $P \cap Q_B = \emptyset$, then path is in Q_{free}

Motion Planning in C-space

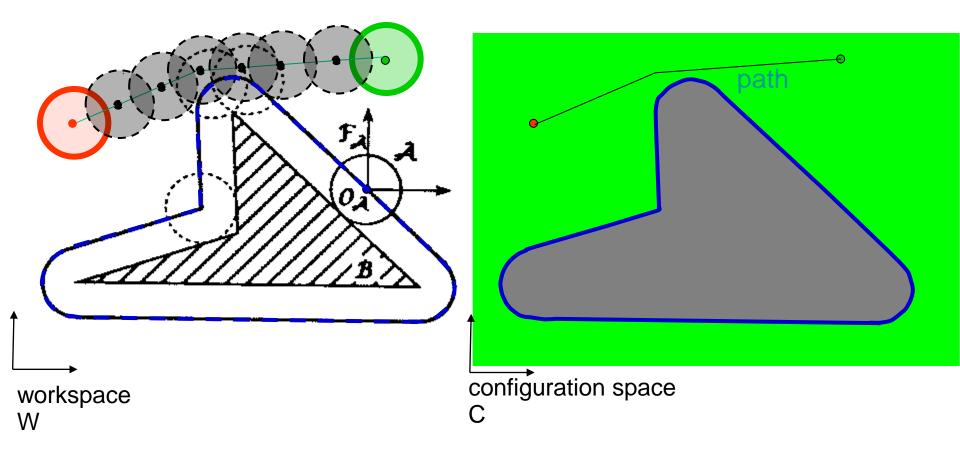


workspace

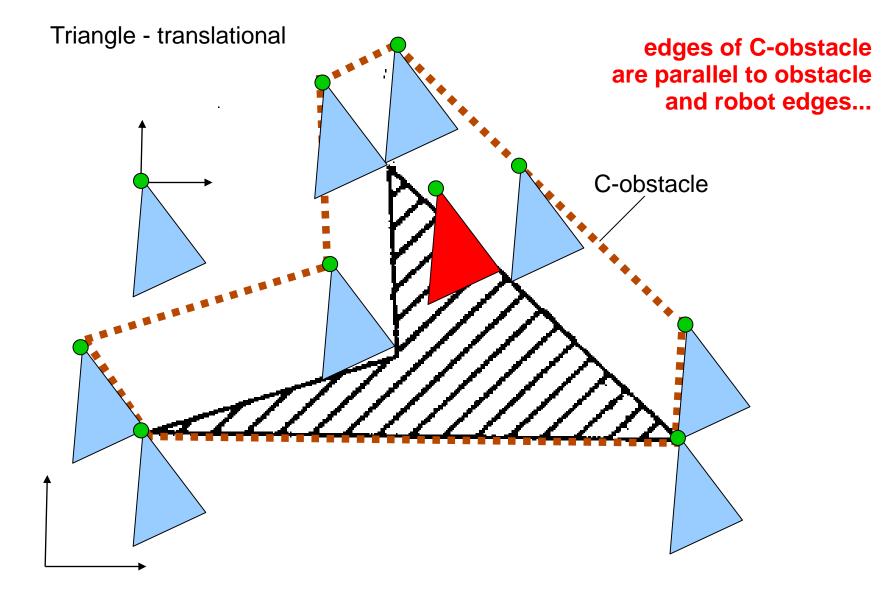


Configuration space

Robot Motion Planning

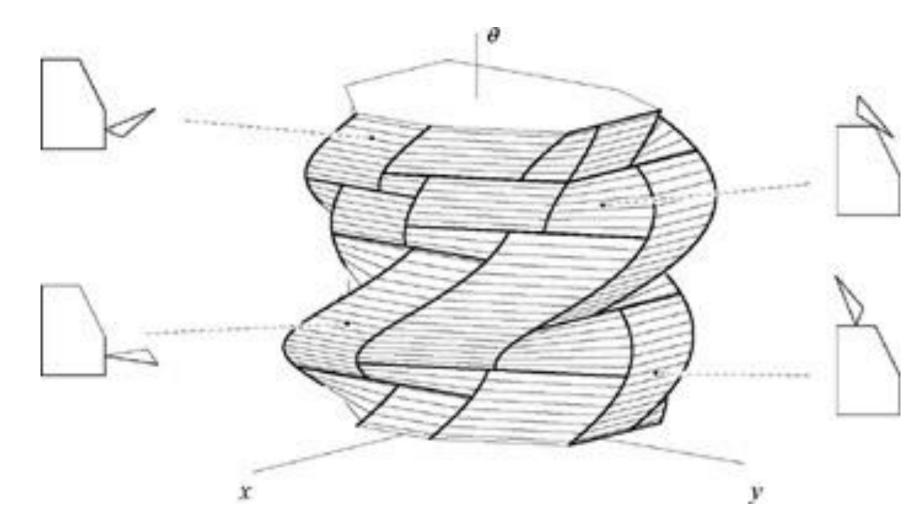


Non-circular mobile robots

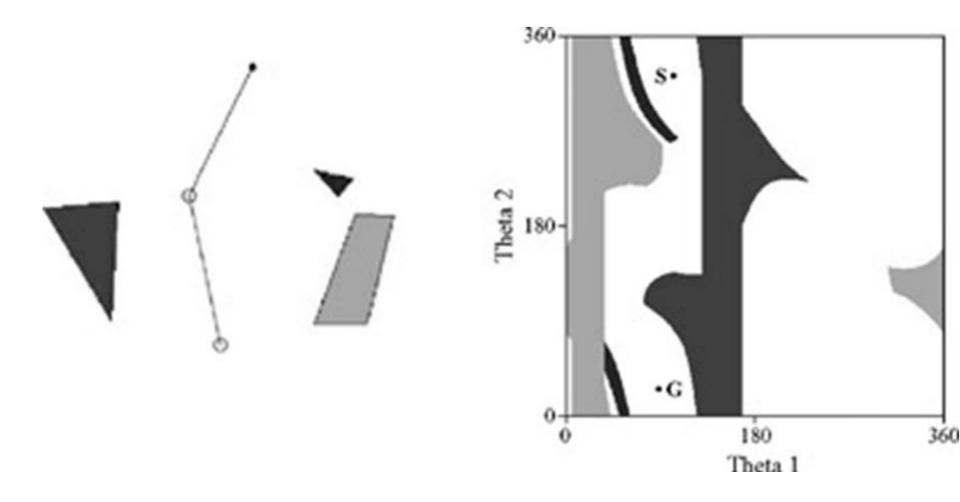


Non-circular mobile robots

C-space with rotation θ (polygonal obstacle)



Configuration Space for Articulated Robots

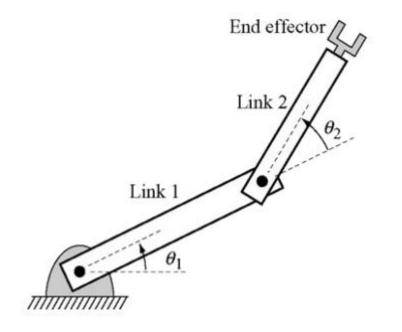


Configuration Space Analysis

Basic steps (for ANY constrained motion system):

- ^{1.} determine degrees of freedom (DOF)
- assign a set of configuration parameters q
 e.g. for mobile robots, fix a frame on the robot
- identify the mapping $R : Q \rightarrow W$, i.e. $R(\mathbf{q})$ is the set of points occupied by the robot in configuration \mathbf{q}
- For any **q** and given obstacle B, can determine if $R(\mathbf{q}) \cap B = \emptyset$. \rightarrow can identify Q_{free} Main benefit: The search can be done for a point
- 5. However, computation of C-spaces is not needed in practice; primarily a conceptual tool.

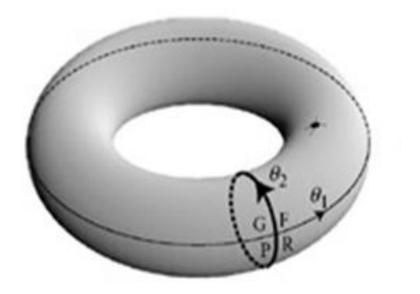
Articulated Robot C-space



How many parameters needed to fix the robot pose ?

What may be one assignment for the configuration parameters?

C-space as manifolds



Topology of C-space: Torus (S1 x S1)

Choset, H etal 2007, Principles of robot motion: Theory, algorithms, and implementations, chapter 3

C-space as manifolds

• **manifold**: generalization of curves / surfaces

every point on manifold has a neighbourhood homeomorphic to an open set in Rⁿ

 Mapping Φ: S→ T is bijective (covers all of T and mapping is unique)
 Φ is homeomorphic: (f / f⁻¹ are continuous)

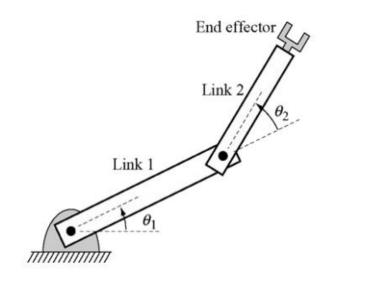
S

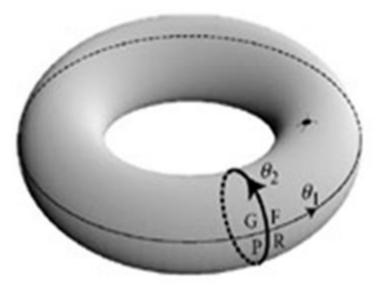
S

diffeomorphic :

(f / f^{-1} are C^{∞} smooth)

C-space as manifolds





Neighbourhood of q is mappable to R2

global topology is not R2 but S1 x S1 (torus)

Map from C-space to W

Given configuration \mathbf{q} , determine volume occupied by $R(\mathbf{q})$ in workspace

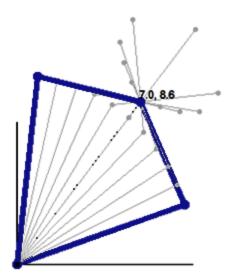
For multi-link manipulators, spatial pose of link (n+1) depends on joint configuration **q** for joints 1, 2, ..., n.

→ Forward Kinematics

Map from W to C-space: given pose in workspace, find **q**

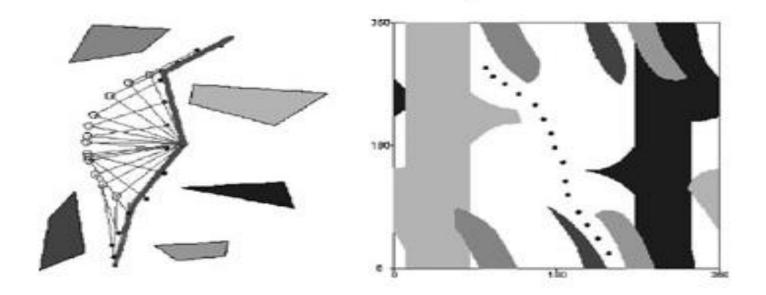
→ Inverse Kinematics

Mapping obstacles



Point obstacle in workspace

Articulated Robot C-space

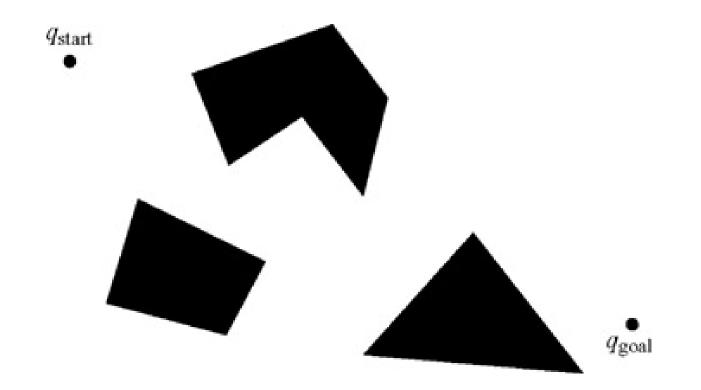


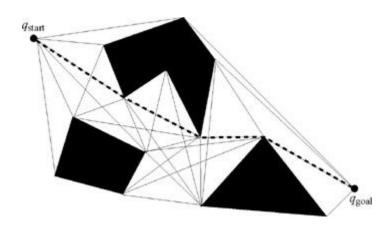
•

Path in workspace

Path in Configuration Space

Graph-based approaches





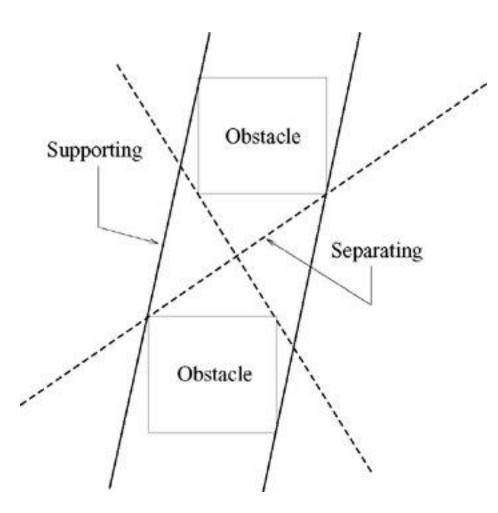
Construct edges between visible vertices

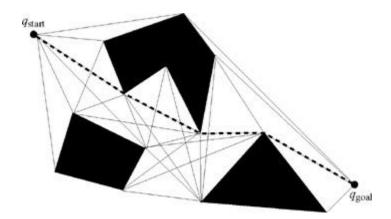
Sufficient to use only supporting and separating tangents

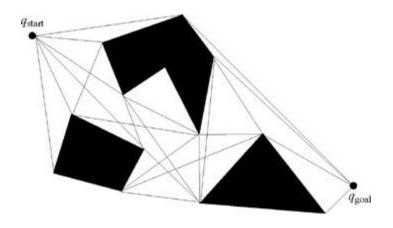
Complexity:

Direct visibility test: $O(n^3)$ (tests for each vtx: O(n) emanations x O(n) obst edges)

Plane sweep algorithm: O(n²logn)







Sufficient to use only supporting and separating tangents

Finds "shortest" path – but too close to obstacles

Cell decomposition methods

Trapezoidal decomposition: Each cell is convex.

Sweep line construction: O(nlogn)

Graphsearch: O(nlogn)

Path: avoids obstacle boundary but has high curvature bends

Roadmap methods

Roadmaps

any roadmap RM must have three properties:

Connectivity:

path exists between any q'_{START} and q'_{GOAL} in RM

Accessibility:

exists a path from any $q_{START} \in Q_{free}$ to some $q'_{START} \in RM$

Departability:

exists a path from some $q'_{GOAL} \in RM$ to any $q_{GOAL} \in Q_{free}$

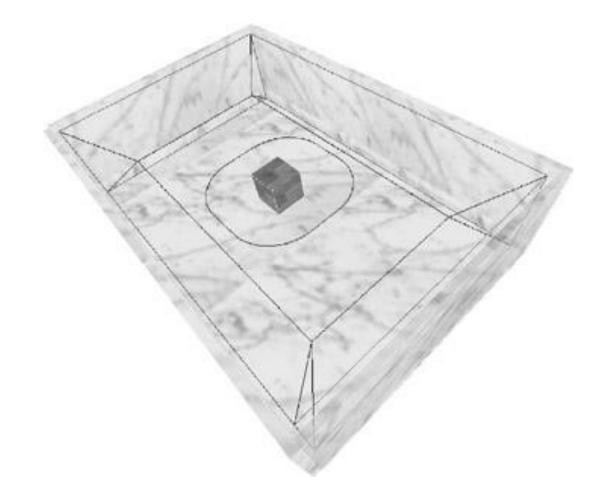
Staying away from Obstacles: Generalized Voronoi Graphs

Voronoi Region of obstacle i :

$$\mathcal{F}_i = \{ q \in \mathcal{Q}_{\text{free}} \mid d_i(q) \le d_h(q) \quad \forall h \neq i \},\$$

Voronoi diagram: set of *q* equidistant from at least two obstacles

Generalized Voronoi Graphs



GVG Roadmaps

Accessibility / Deparability:

Gradient descent on distance from dominant obstacle :

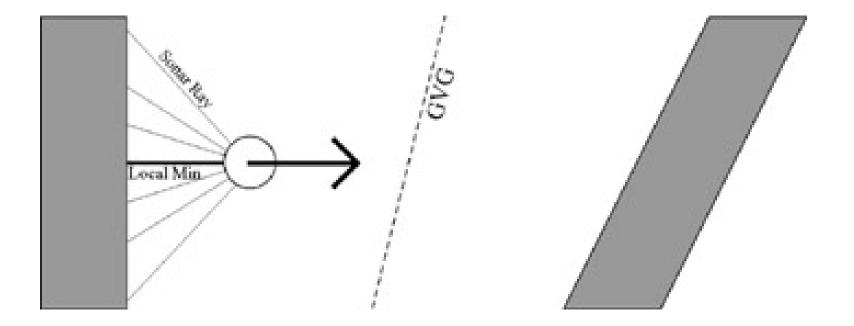
→ guaranteed to reach from any $q_{START} \in Q_{free}$ to some $q'_{START} \in RM$

→ motion is along a "retract" or brushfire trajectory

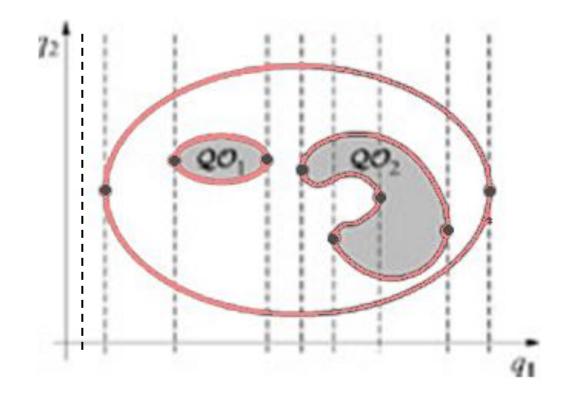
Connectivity:

GVG is Connected if path exists

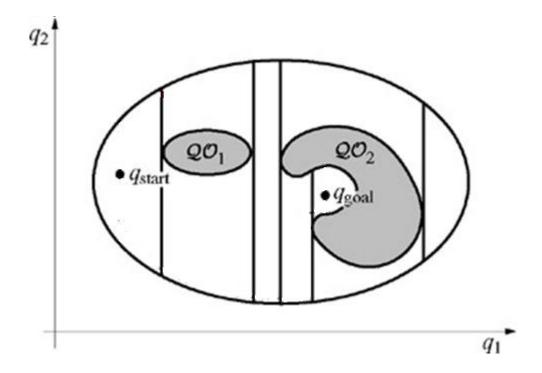
Sensor based Voronoi roadmap construction



Canny's Silhouette roadmap



Canny's Silhouette roadmap



Canny's Complexity Analysis

- n: = degrees of freedom of robot (dim of Cspace)
 - obstacles C-space boundaries represented as p polynomials of maximum degree w

Complexity:

any navigation path-planning problem can be solved in pⁿ(logp)w^{O(n⁴)} time

Probabilistic Roadmap (PRM)

Probabilistic Roadmap

Sample n poses $q_1 \dots q_n$ in the WORKSPACE

Free space nodes: Reject q_i that intersect with an obstacle, remaining nodes q are in Q_{free}

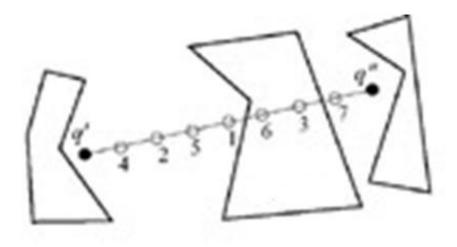
Local planning: in k-nearest neighbours, if path <q_i,q_i>collision-free, add edge to graph

Resulting graph = *Probabilistic Roadmap*

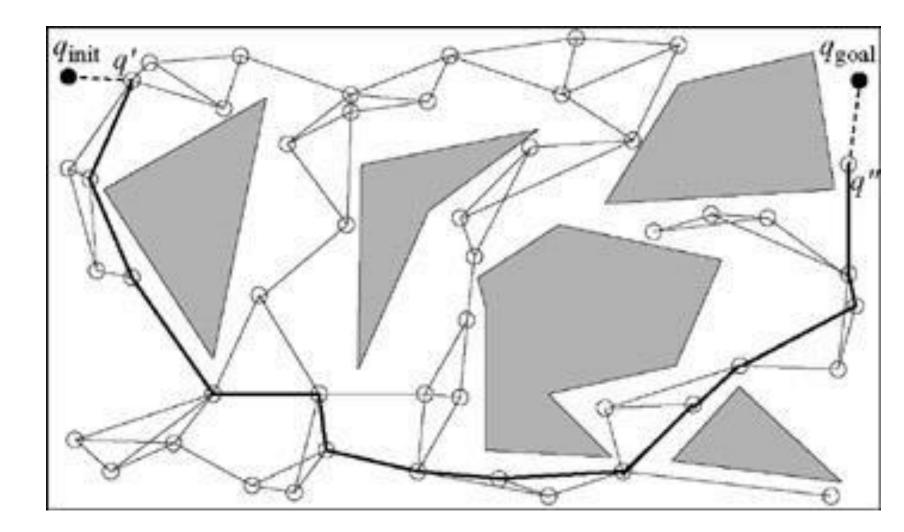
Local Planner

Objective: Test if path <q_i,q_j> is collisionfree

Linear Subdivision algorithm: start at midpoint(q_i,q_j); subdivide recursively until desired precision



Probabilistic Roadmaps (PRM)



Sampling-based motion planning

Sample n poses q₁...q_n in the workspace

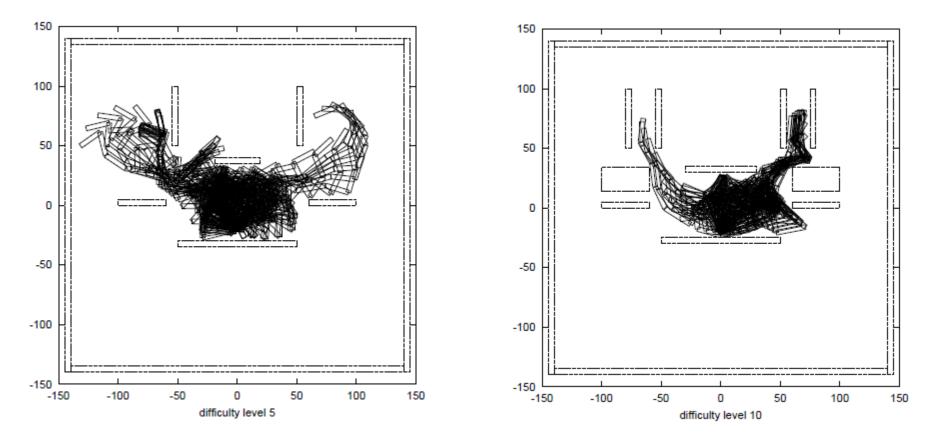
Reject q_n that overlap with an obstacle, remaining poses are in Q_{free}

Use local planning to determine if a path exists between neighbours q_i and q_i.

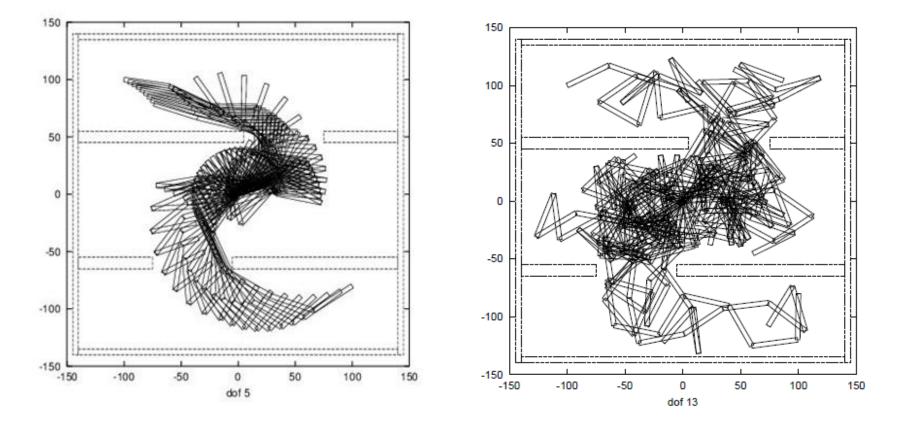
Resulting graph = *Probabilistic Roadmap*

Probabilistically complete: As #samples $n \rightarrow \infty$, Prob (success) $\rightarrow 1$

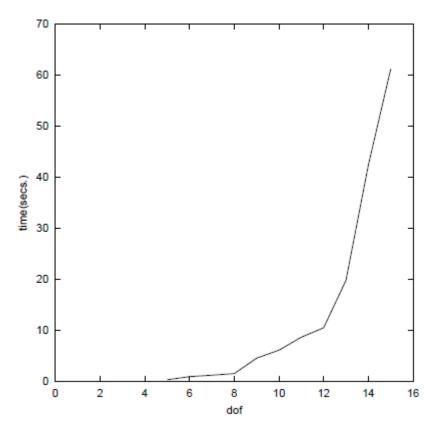
Hyper-redundant robot motion planning using PRM



Hyper-redundant robot motion planning using PRM

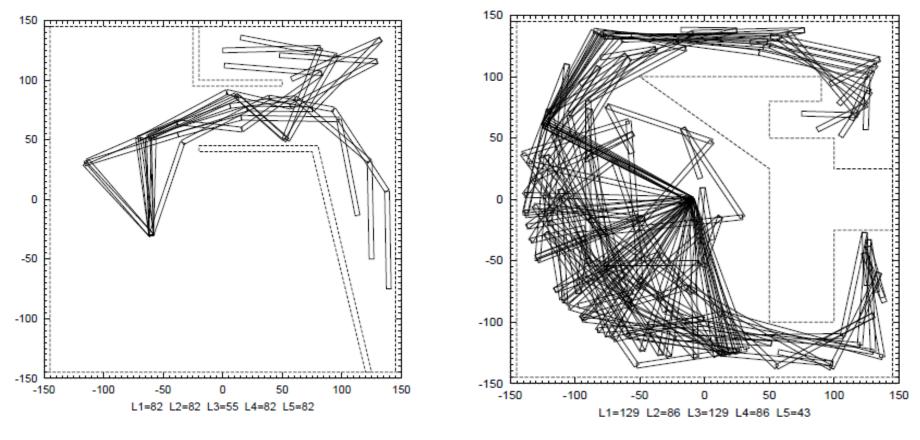


Hyper-redundant motion planning

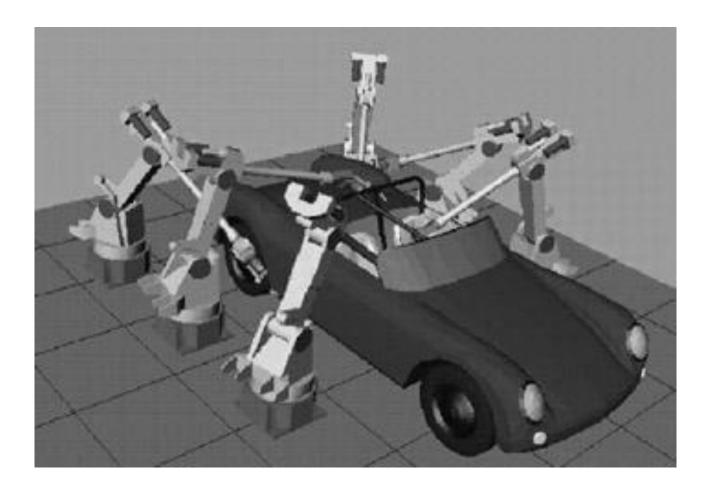


Time: Exponential in DOFs

Design for manipulability

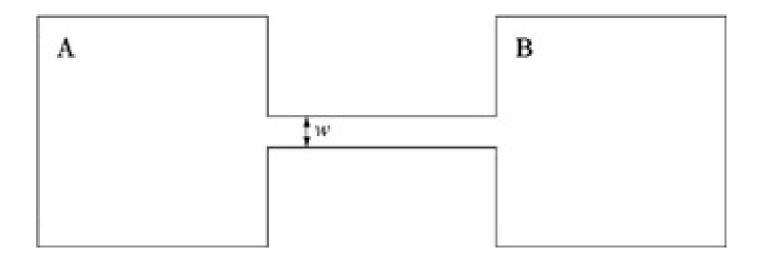


PRM applications



42 DOFs: [Sánchez and J. C. Latombe 02]

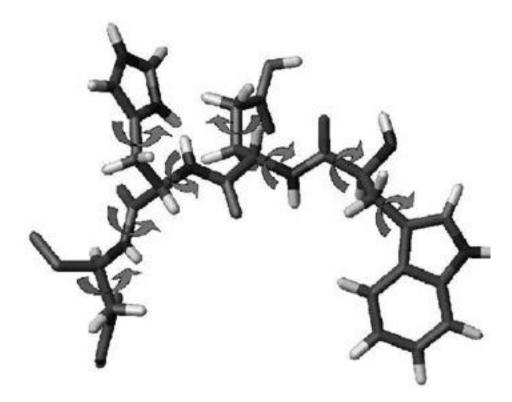
Narrow corridor problem

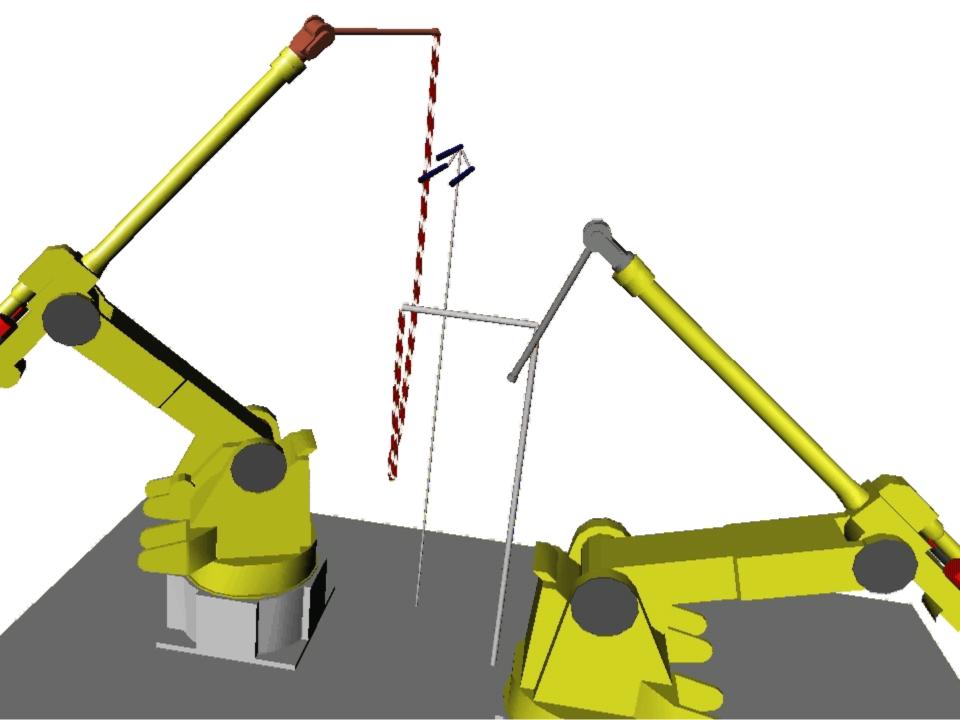


Solution: generate more samples near boundary

- bias the sample towards boundary region
- if midpoint between two obstacle nodes is free, add

PRM applications : Protein folding



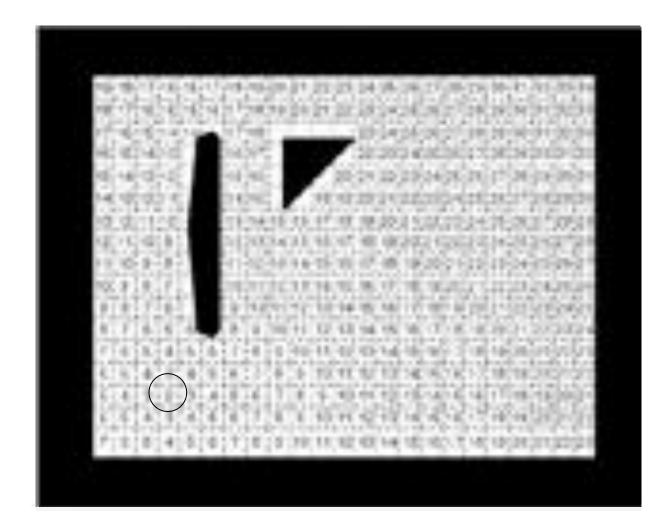


Continuum methods: Overcoming Local minima

Grid-based: Wave-front

- Grid-based model
- given a start grid cell **q**_s assign it the value "2"
 - Every neighbour gridcell gets +1
 - Until grid is filled
- Given a goal cell ${\bf q}_{\rm G}$ use greedy search to find path back to goal

Grid-based: Wave-front

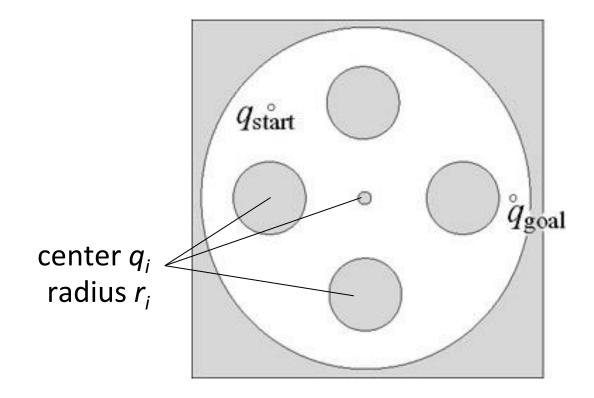


O(k^d) space / time

Navigation Function : Sphere space

- Spherical wall (r₀), with spherical obstacles inside
- Obstacle distance $\beta_0(q) = -d^2(q, q_0) + r_0^2$, wall $\mathcal{QO}_i = \{q \mid \beta_i(q) \le 0\}$ $\beta_i(q) = d^2(q, q_i) - r_i^2$, obstacles

Sphere space



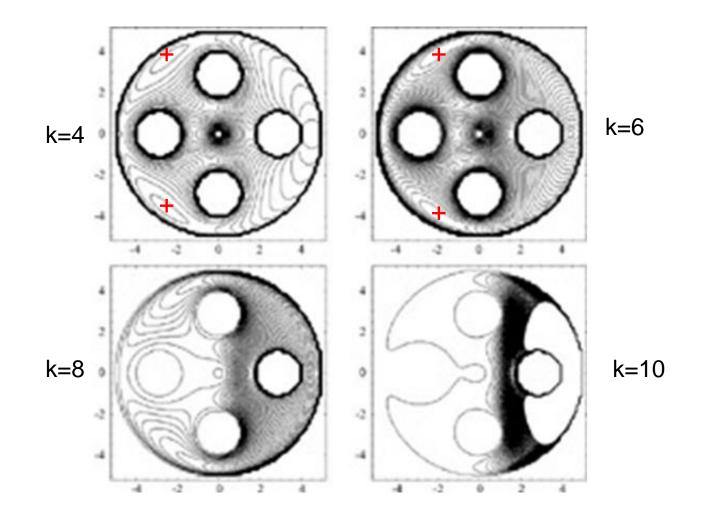
Rimon Koditschek 92

Navigation Function : Sphere space

- Spherical wall (r₀), with spherical obstacles inside
- Obstacle distance $\beta_0(q) = -d^2(q, q_0) + r_0^2$, wall $\mathcal{QO}_i = \{q \mid \beta_i(q) \le 0\}$ $\beta_i(q) = d^2(q, q_i) - r_i^2$, obstacles
- Goal potential with high exponent $\gamma_{\kappa}(q) = (d(q, q_{\text{goal}}))^{2\kappa}$
- Instead of sum, use product to combine obstacle potentials $\beta(q) = \prod_{i=0}^{n} \beta_i(q).$
- For high k, $\frac{\gamma_{\kappa}}{\beta}(q)$ has unique minima at goal

[Rimon Koditschek 92]

Navigation Function



Choset etal 05

Navigation Function

 $\phi: S \rightarrow [0, 1]$: navigation function on sphere space S.

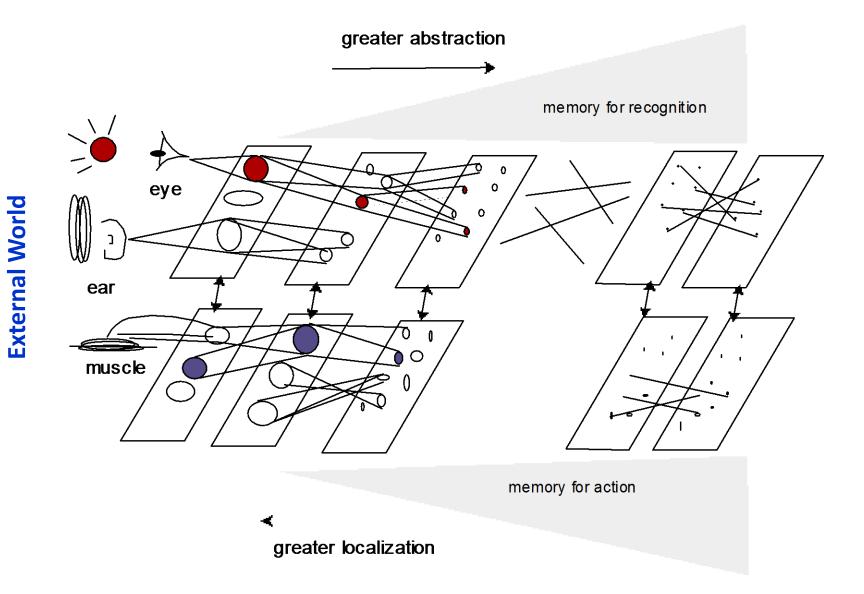
For any space F if exists diffeomorphic mapping $h: F \rightarrow S$ (i.e. h is smooth, bijective, and has a smooth inverse),

then $\varphi = \varphi \circ h$ is a navigation function on *F*

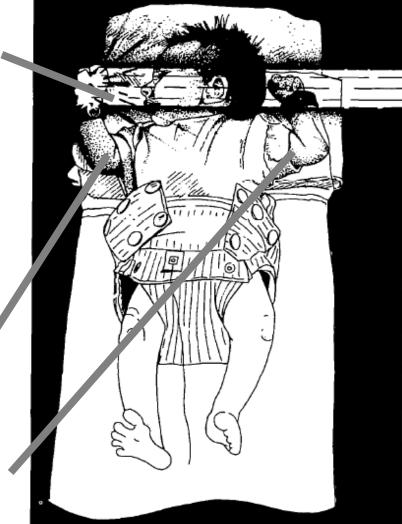
Choset etal 05

Sensori-motor map learning

Cognitive Architecture: Levels of Abstractions



Visuo-Motor expertise



in darkened room, works hard to position arm in a narrow beam of light

Newborns (10-24 days)

Small weights tied to wrists

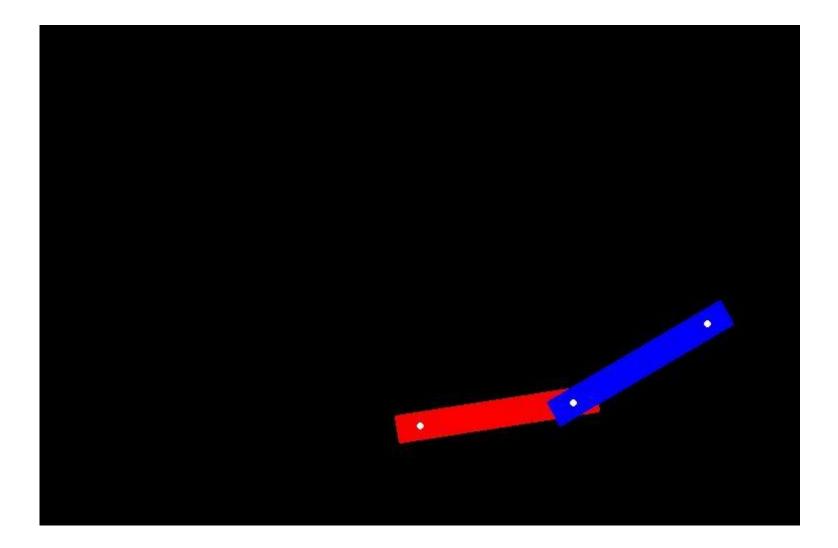
Will resist weights to move the arm they can see

Will let it droop if they can't see it

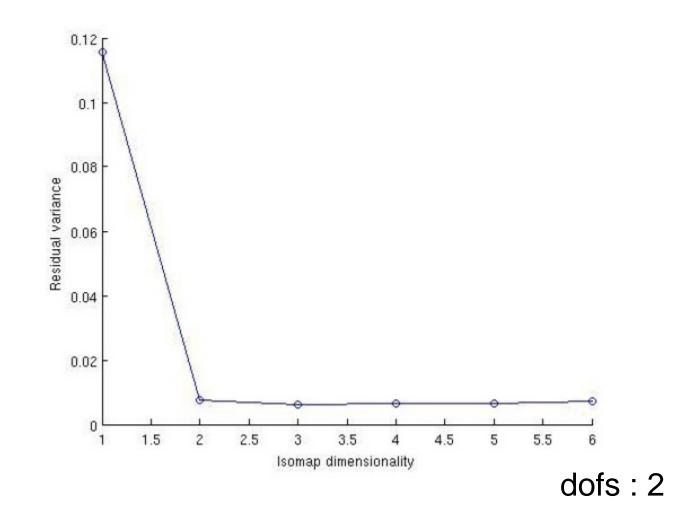
[A. van der Meer, 1997: Keeping the arm in the limelight]

Observing self motions

Simulation



Manifold dimension

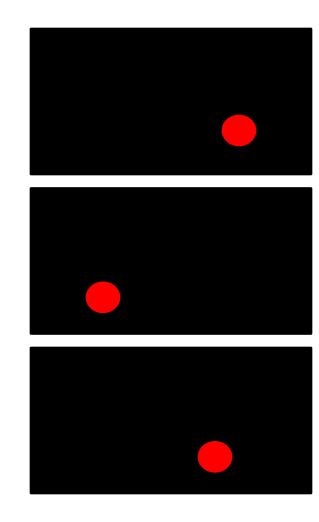


Discovering Configuration Space

Collect a set of images of the robot at random configurations

Reduce the image set to a low dimensional representation

Latent variables: (y₁, y₂,... y_d) for d=2, each image represented as a pair of values



Smoothly Deformable objects

Object S = set of connected points S in $G \subset R^d$.

Deformation function $h : G \rightarrow G$ is a function of a parameter vector $q = \{q_1...q_k\}$.

Smooth Deformation : $S \rightarrow hS(q)$, is a diffeomorphism from G to G

Smoothly Deformable objects

Ex.1

Articulated chain with N rigid links, and k joints, each with 1 DOF each.

hS determined by $\{q_1...q_k\}$, where each q_i is the parameter associated with each joint.

Deformable objects

LEMMA:

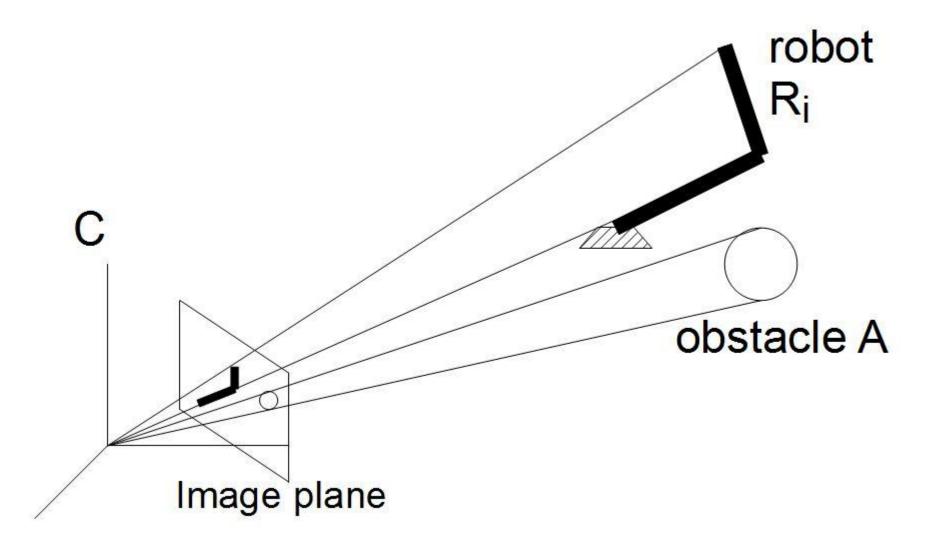
The space of shapes and poses of S is a manifold of at most k dimensions. (k = dimensionality of q).

Any x IN S(q) has a neighbourhood N, s.t. there is a homeomorphism phi from N onto the space Q of $\{q1...qN\}$. In R^N

the map phi can be composed of the motion transformation T(q1..qm) [a special euclidean group) and the smooth deformation shape funnction hS(q1..qd)

Both of these transformations being diffeomorphic.

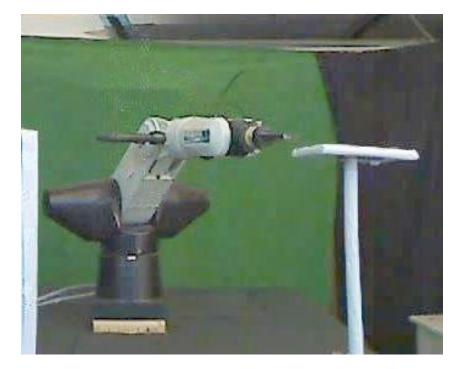
Imaging transformation



Visual Manifold theorem

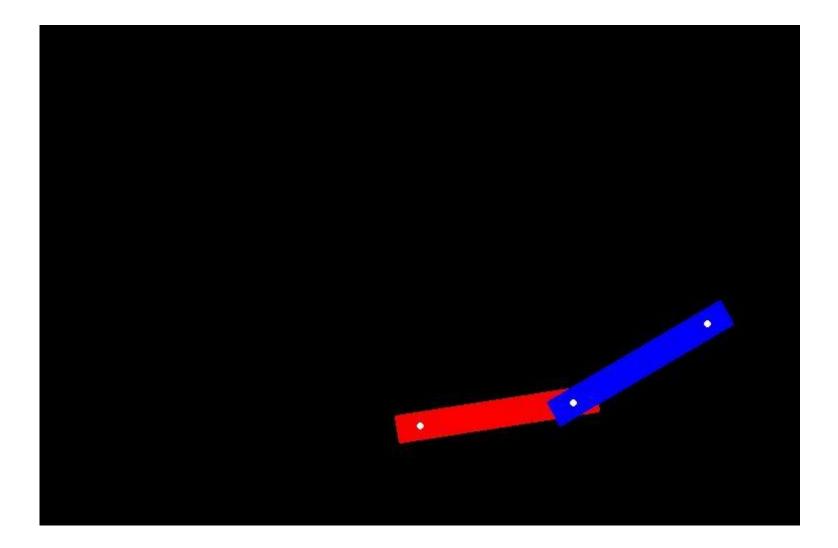
If S is a smoothly moving, visually distinguishable, deformable object, then any image of S, taken from a fixed camera, would lie on a manifold of at most N dimensions in the image space.

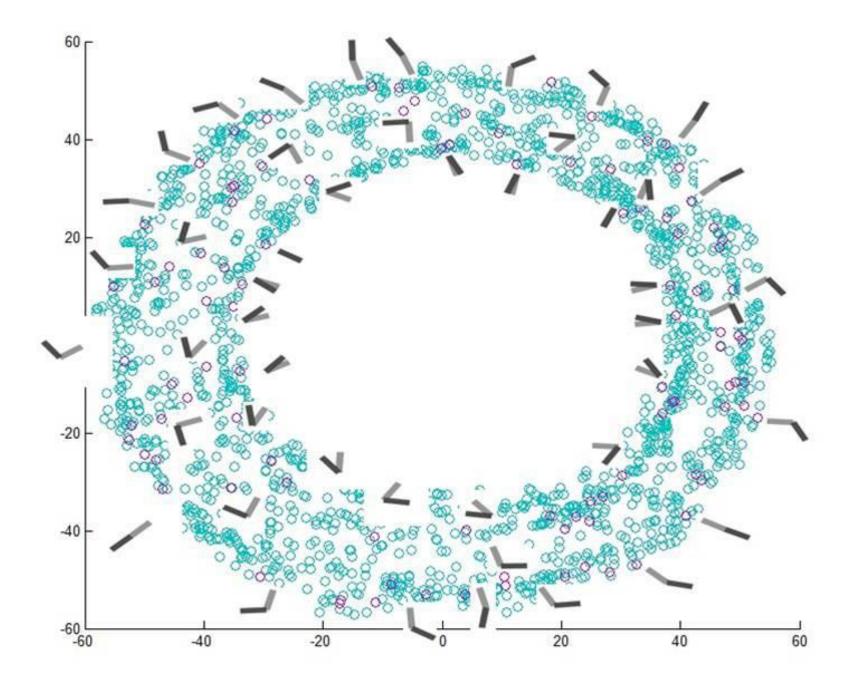
Visual Distinguishability



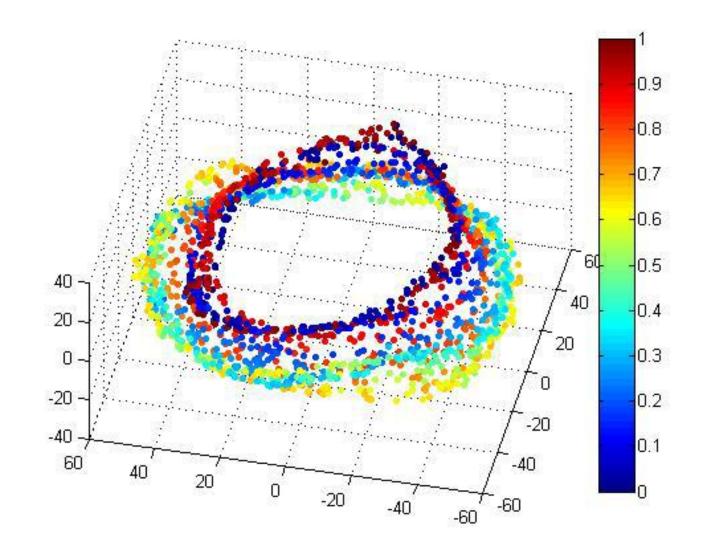
Robot Structure Discovery

Simulation

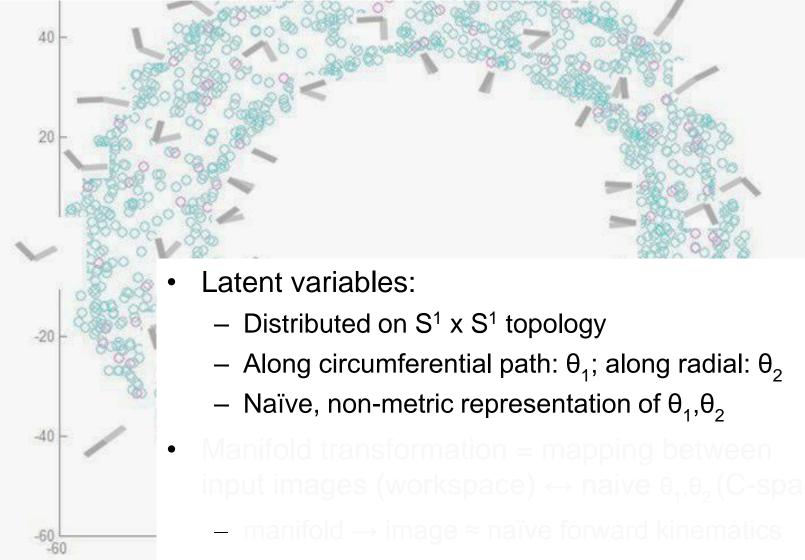




Robot Structure Learning



Robot Structure Learning

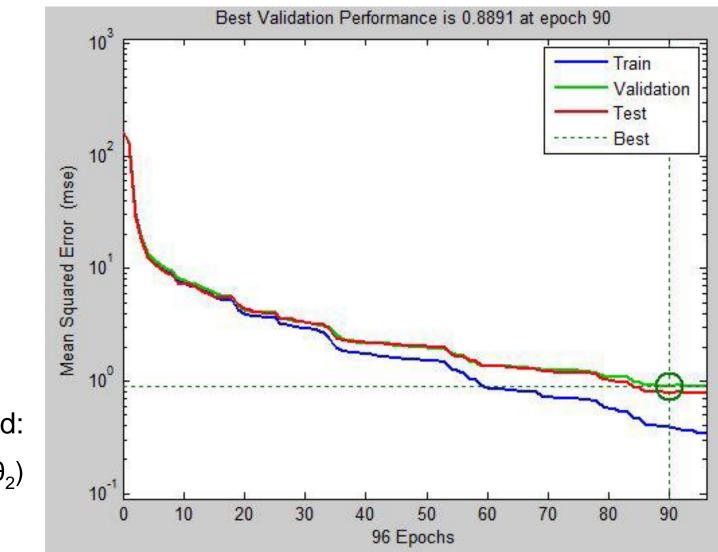


– image \rightarrow manifold \approx naïve inverse kinematics

Robot Structure Learning

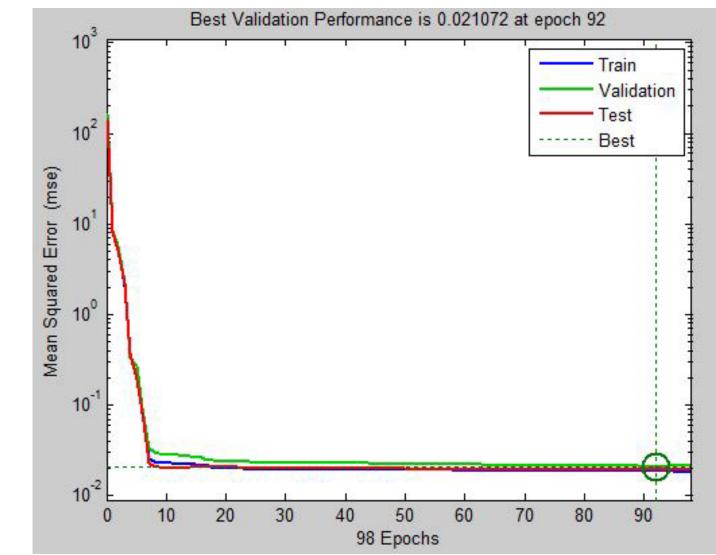
- Latent variables:
 - Distributed on $S^1 \times S^1$ topology
 - Along circumferential path: θ_1 ; along radial: θ_2
 - Naïve, non-metric representation of θ_1, θ_2
- Manifold transformation = mapping between input images (workspace) ↔ naive θ₁,θ₂ (C-space)
 - − manifold \rightarrow image ≈ naïve forward kinematics
 - image → manifold ≈ naïve inverse kinematics

Mapping to control parameters



Supervised: Image to (θ_1, θ_2)

Mapping to control parameters



Supervised: Manifold (y1,y2) to (θ_1, θ_2)

Formal and Naïve Representations

```
Formal Representation
       dofs - 2
       parameters - \Theta: \Theta_1, \Theta_2 \Theta \in Q \subseteq S^1 \times S^1
       forward mapping - workspace(\Theta_1, \Theta_2): Q \rightarrow I_m \subset R^D,
                                    Im: image space
       inverse mapping - Cspace(I): I_m \rightarrow Q
       motion plan - wspace(I_s, I_q) \rightarrow I_s, I_1, I_2, \dots, I_n, I_q
       motion plan - Cspace(q_s, q_g) \rightarrow q_s, q_1, q_2, \dots, q_n, q_g
```

Discovered (Naïve) Representation

Naive Representation

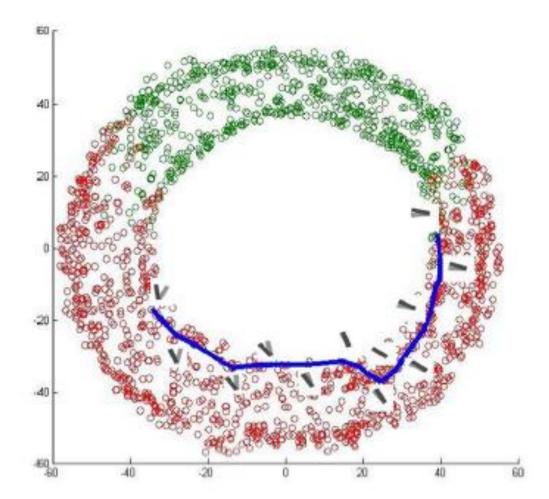
dimensionality : 2 discovered parameters: $\boldsymbol{\phi}: \phi_1, \phi_2 \in \Upsilon \subseteq S^1 \times S^1$ forward mapping - workspace $(\phi_1, \phi_2): \Upsilon \to I_m \subset \mathbb{R}^D$, $I_m:$ image space motion plan - wspace $(I_s, I_g) \to I_s, I_1, I_2, \dots, I_n, I_g$ motion plan - Cspace $(q_s, q_g) \to q_s, q_1, q_2, \dots, q_n, q_g$

Motion Planning

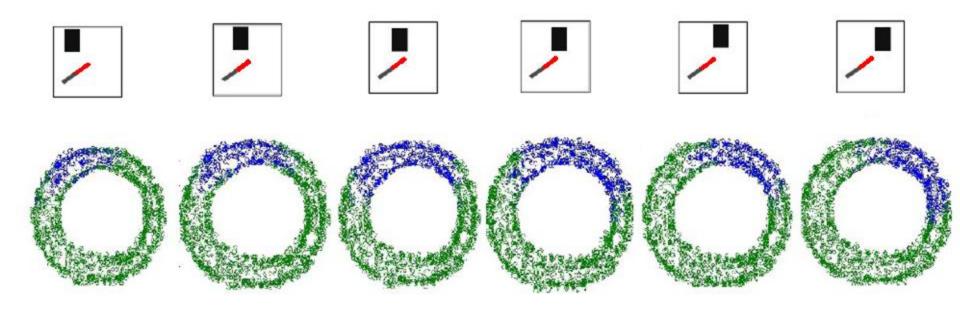
Motion planning

Given start / goal image, map to manifold using local interpolation

Use k-nn connectivity in manifold as "roadmap" for motion planning

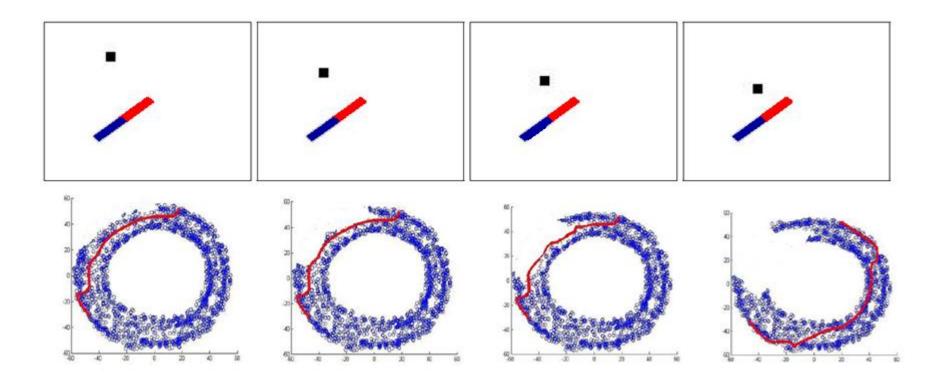


Obstacle modeling by node deletion



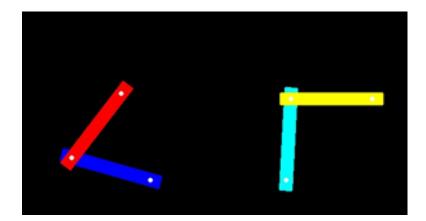
If obstacle intersects robot in image space → delete corresponding nodes from "visual roadmap"

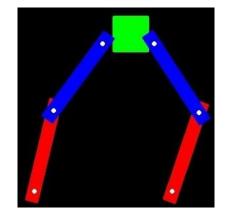
Path planning as obstacle moves

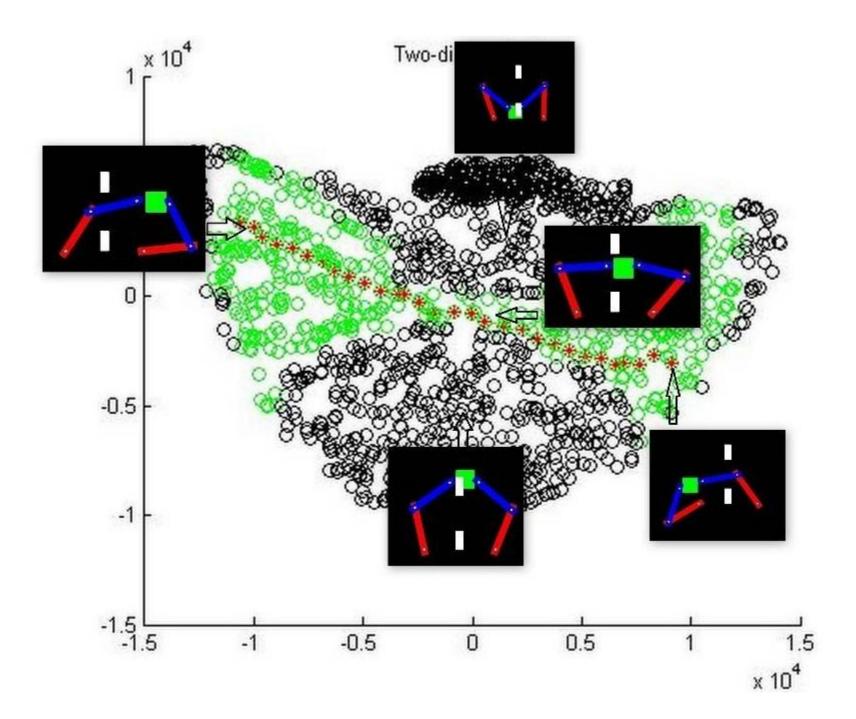


Constrained Motion

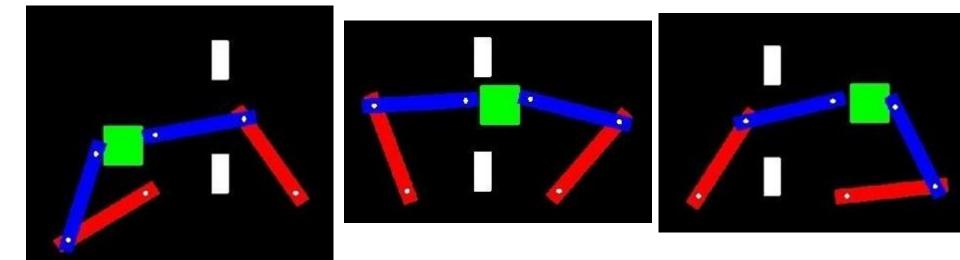
Obstacle modeling by node deletion



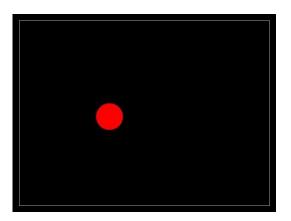


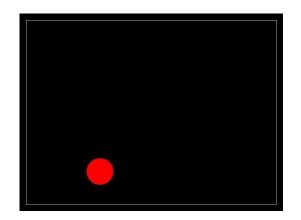


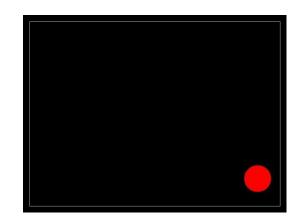
Obstacle modeling by node deletion

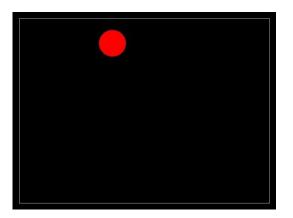


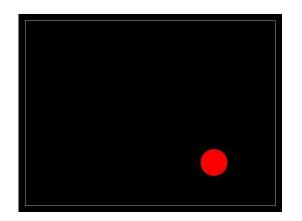
Mobile robots

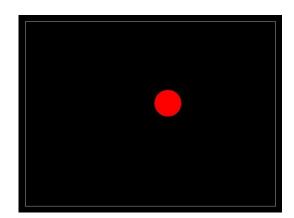


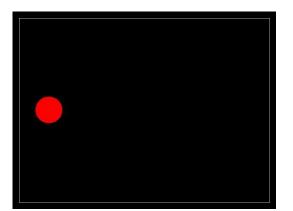


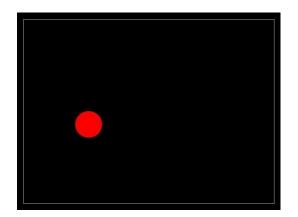


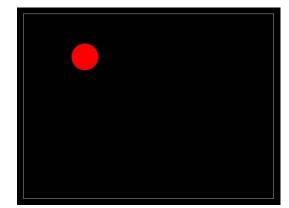




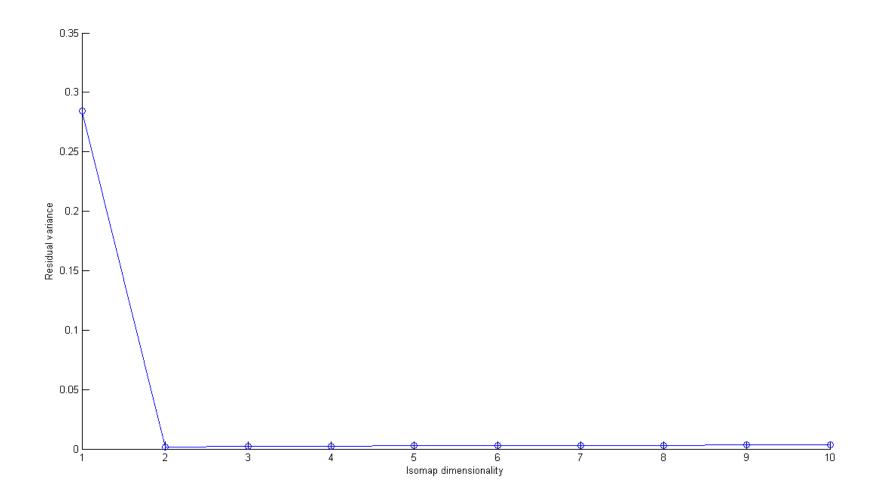




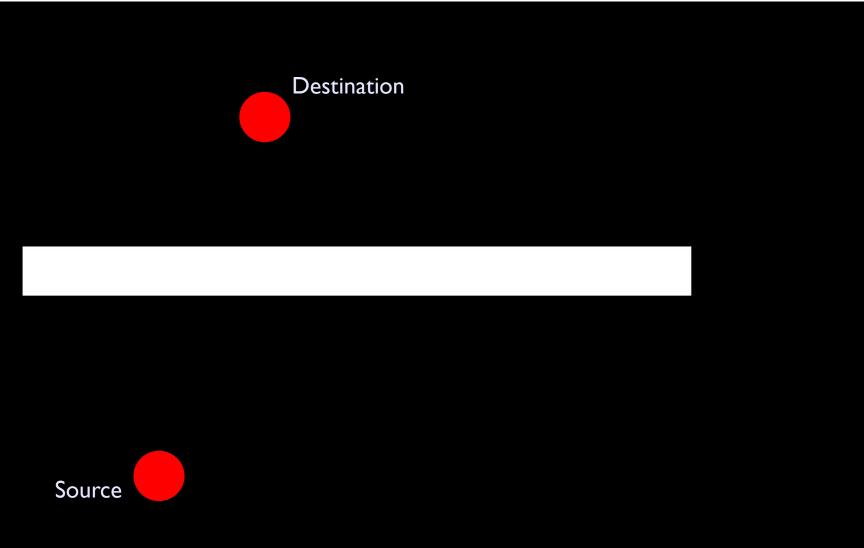




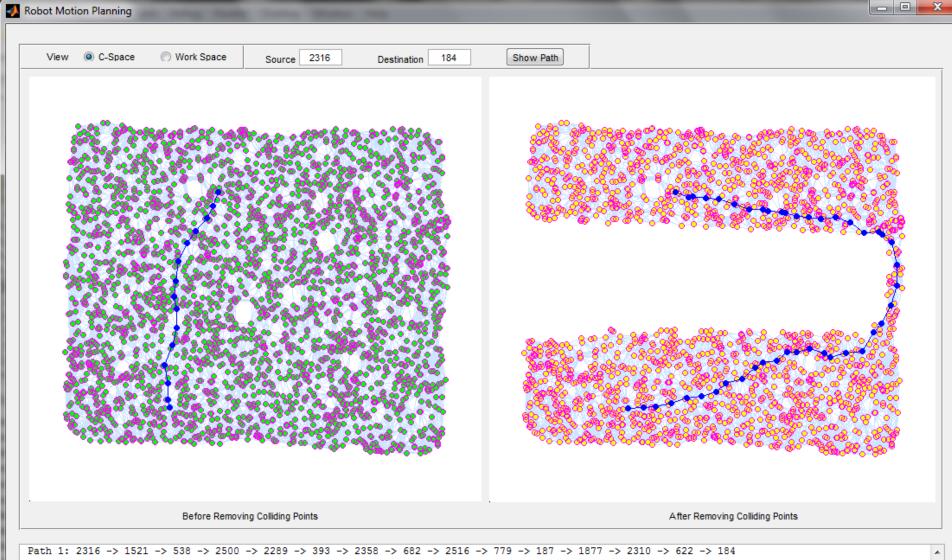
Residual error : disk robot



Robot Motion Planning

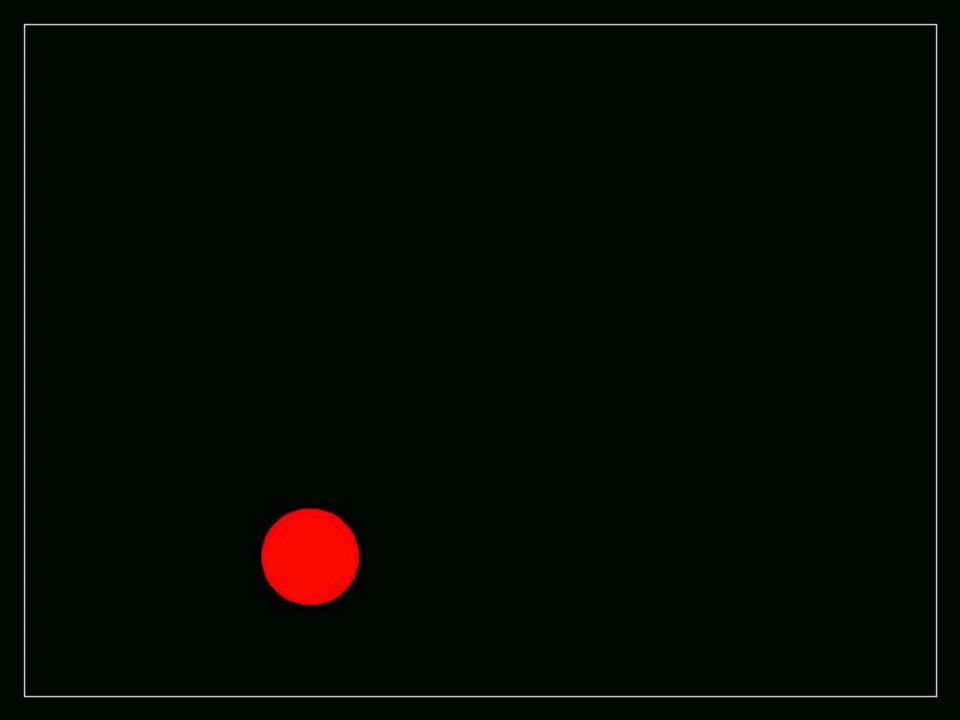


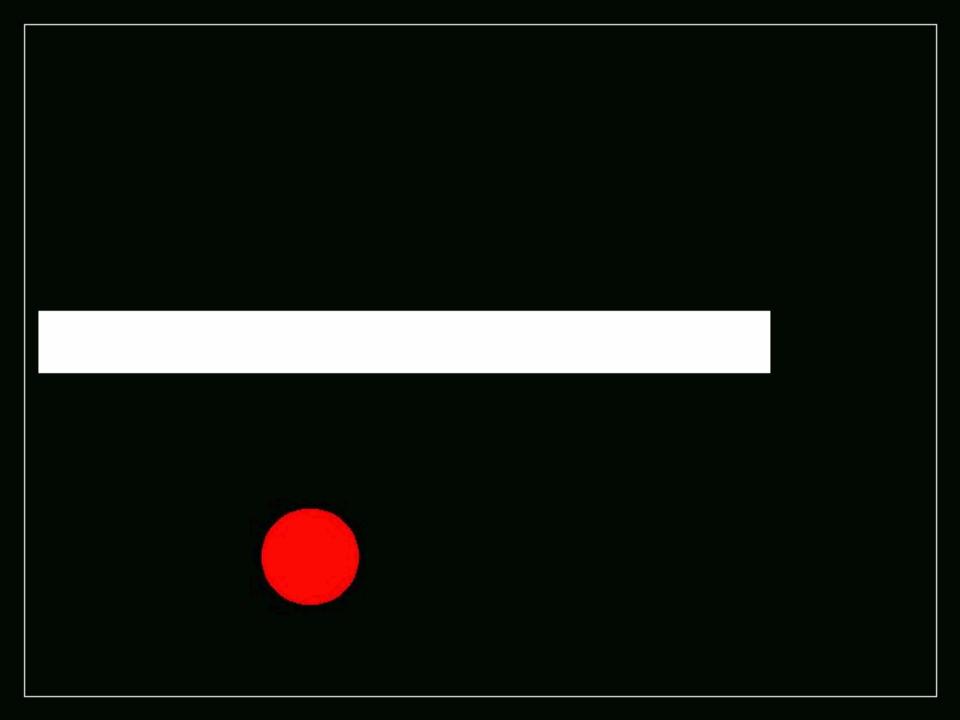
Path Planning Interface



Length of Path 1 = 8457.7

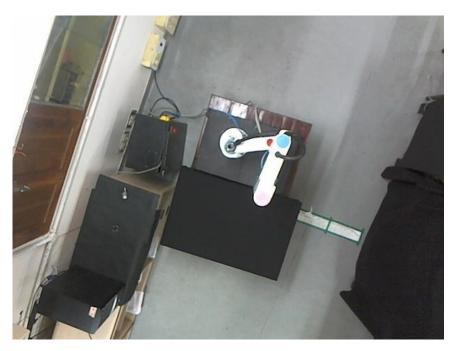
Path 2: 2316 -> 41 -> 328 -> 50 -> 2257 -> 224 -> 1436 -> 657 -> 263 -> 1854 -> 1608 -> 2690 -> 1524 -> 1315 -> 843 -> 323 -> 2226 -> 2061 -> 911 -> 399 -> 796 -> 1817 -> 1352 -> 465 -> 386 -> 786 -> 1994 -> 1761 -> 1983 -> 2047 -> 2650 -> 450 -> 1400 -> 2700 -> 2535 -> 1038 -> 1634 -> 45 -> 1093 -> 1609 -> 2369 -> 828 -> 597 -> 184

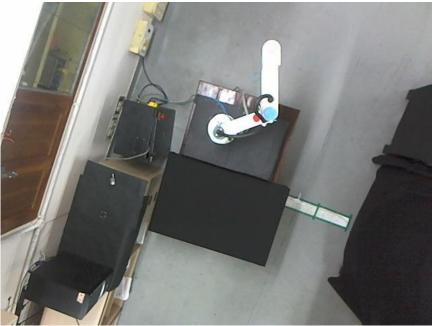




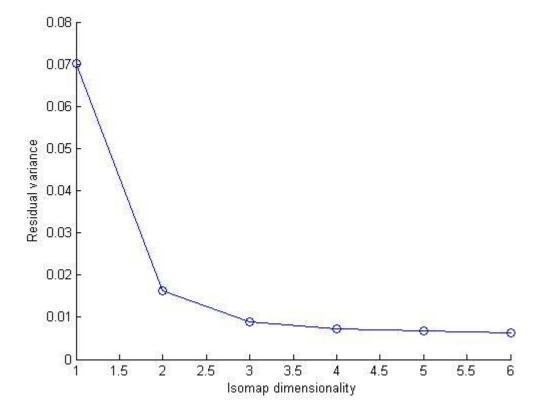
Real robots

SCARA arm

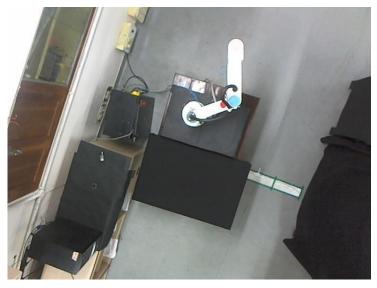




SCARA arm : degrees of freedom

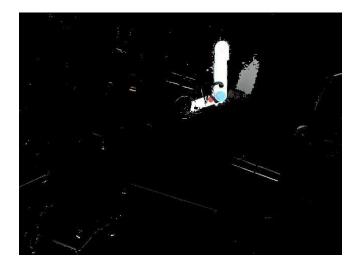


Background Subtraction : Robot



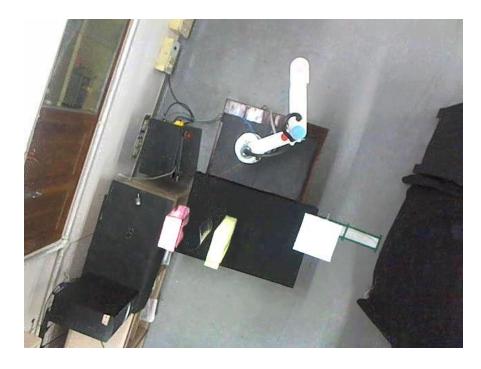
image

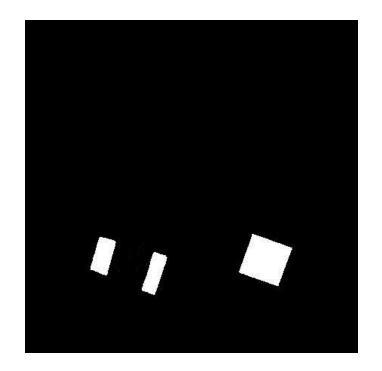
foreground (moving part)



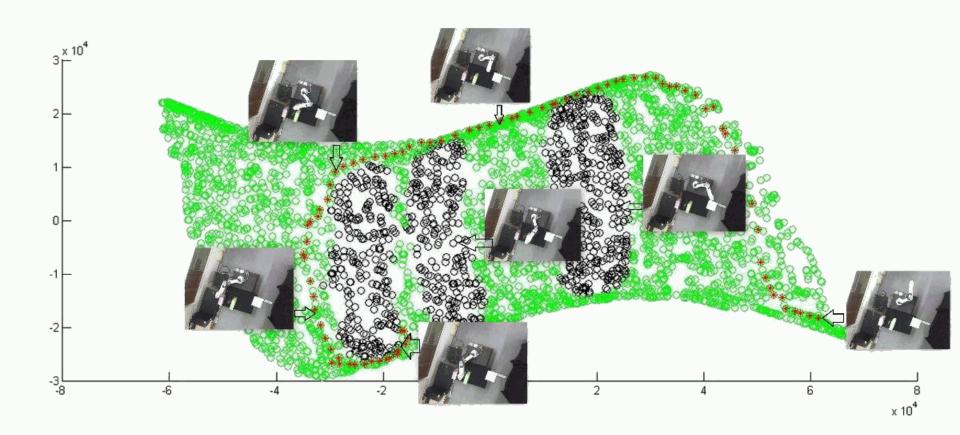
learned background

Background Subtraction : Obstacle





Visual Configuration Space



Application to Graphics

Head Motion



Beyond Geometry

- Geometry is not everything!!
- Real robots have limitations on acceleration owing to torque / inertia → Dynamics
- Learning to plan motions?
 - Babies learn to move arms
 - Learn low-dimensional representations of motion
- Grasping / Assembly : Motions along obstacle boundary

Humans and Robots

madhur ambastha cs665 2002