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Abstract

Positive and unlabelled learning (PU learning) has
been investigated to deal with the situation where
only the positive examples and the unlabelled ex-
amples are available. Most of the previous works
focus on identifying some negative examples from
the unlabelled data, so that the supervised learn-
ing methods can be applied to build a classifier.
However, for the remaining unlabelled data, which
can not be explicitly identified as positive or neg-
ative (we call them ambiguous examples), they ei-
ther exclude them from the training phase or sim-
ply enforce them to either class. Consequently,
their performance may be constrained. This paper
proposes a novel approach, called similarity-based
PU learning (SPUL) method, by associating the
ambiguous examples with two similarity weights,
which indicate the similarity of an ambiguous ex-
ample towards the positive class and the nega-
tive class, respectively. The local similarity-based
and global similarity-based mechanisms are pro-
posed to generate the similarity weights. The am-
biguous examples and their similarity-weights are
thereafter incorporated into an SVM-based learn-
ing phase to build a more accurate classifier. Exten-
sive experiments on real-world datasets have shown
that SPUL outperforms state-of-the-art PU learning
methods.

1 Introduction

Traditional supervised learning methods require that both
the positive and negative examples are available for training.
However, in many real-world applications [Fung et al., 2006],
it is not easy to obtain the negative examples. For example,
in Web page classification, the users may mark their favorite
Web pages, but they are unwilling to mark the boring pages
that they show no preference. Therefore, the positive and un-
labelled learning (PU learning) is studied to deal with the sit-
uation where only the positive examples and the unlabelled
examples are available in the training phase [Liu et al., 2002].

∗Bo Liu is the corresponding author.

In the PU learning, since the negative examples are un-
available, most of the existing works [Liu et al., 2002;
Yu et al., 2004; Li and Liu, 2003; Liu et al., 2003; Li et al.,
2009] focus on identifying some reliable negative examples
from the unlabelled examples, so that the supervised learn-
ing methods can be applied to build the classifier. However,
there may exist a number of unlabelled examples which can
not be explicitly identified as positive or reliable negative (we
call them ambiguous examples here). Compared to the exam-
ples which can be clearly classified to be positive or negative,
the ambiguous examples are more likely to lie near the deci-
sion boundary and play a critical role in building the classi-
fier. Therefore, it is essential to appropriately deal with the
ambiguous examples in order to learn an accurate classifier.

Considering the existing PU learning works, different
strategies have been proposed to deal with the ambiguous
examples. Since the labels of ambiguous examples are dif-
ficult to be determined, one group of works [Liu et al., 2002;
Yu et al., 2004; Li and Liu, 2003; Liu et al., 2003] excludes
the ambiguous examples from the learning phase, and the
classifier is trained by using only the positive and some nega-
tive examples. For example, Spy-EM (Spy Expectation Max-
imization) [Liu et al., 2002] uses a spy technique to iden-
tify some reliable negative examples from the unlabelled ex-
amples, and then EM is run to build the classifier by using
the positive examples and the extracted negative examples.
However, the classification ability of these methods may be
limited, since the ambiguous examples, which can contribute
to the classifier construction, are excluded from the learning
process.

Another group of works includes the ambiguous examples
in learning the classifier by straightforwardly assigning them
to the positive class or the negative class. For example, in
LELC [Li et al., 2009], the ambiguous examples are clus-
tered into micro-clusters. For each micro-cluster, the dis-
tances from its examples to the positive prototypes and the
identified negative prototypes are calculated. Based on a vot-
ing strategy, the micro-cluster (including all its examples) is
assigned to the class which the micro-cluster is closer to. By
considering the ambiguous examples, LELC performs better
than other PU learning methods [Li et al., 2009]. However,
in LELC, there may exist some micro-clusters, in which some
examples are biased towards the positive class, while the oth-
ers are closer to the negative class. In such case, if we simply
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enforce the whole micro-cluster of examples to any of the two
classes, misclassification may be incurred.

In this paper, we propose a novel approach, called
similarity-based PU learning (SPUL), by utilizing the am-
biguous examples as an effective way to improve the PU
learning classification accuracy. Instead of eliminating the
ambiguous examples from the learning phase or enforcing the
ambiguous examples directly to one class, our proposed ap-
proach explicitly deals with the ambiguous examples by con-
sidering their similarity towards both of the positive class and
the negative class. Specifically, our proposed approach works
in three steps. In the first step, we extract reliable negative
examples from the unlabelled data and build the representa-
tive positive and negative prototypes. In the second step, we
cluster the remaining unlabelled examples into micro-clusters
and assign each example with two similarity weights, which
indicate the similarity of an ambiguous example towards the
positive class and the negative class, respectively. To do this,
the local similarity-based and global similarity-based mech-
anisms are proposed to generate the similarity weights. In
the third step, we extend the standard support vector ma-
chine (SVM) to incorporate the ambiguous examples with
their similarity weights into a learning phase, such that the
ambiguous examples can contribute differently on the classi-
fier construction based on their similarity weights. Extensive
experiments have been conducted to investigate the perfor-
mance of SPUL and the statistical results show that SPUL
outperforms state-of-the-art PU learning methods.

2 Related Work

2.1 Positive and Unlabelled Learning

In recent years, the PU learning has found various applica-
tions in text mining due to the fact that collecting a large
set of negative documents is always expensive and chal-
lenging [Li et al., 2007; Liu et al., 2002; Yu et al., 2004;
Lee and Liu, 2003; Li and Liu, 2003; Liu et al., 2003;
Zhou et al., 2010; Scholkopf et al., 2001]. We briefly review
the existing works on PU learning in the following.

The first group of works [Liu et al., 2002; Yu et al., 2004;
Li and Liu, 2003; Liu et al., 2003] adopts an iterative frame-
work to extract the negative examples from the unlabelled ex-
amples, and train the classifier alternatively. For example,
Spy-EM (Spy Expectation Maximization) [Liu et al., 2002]

uses a Spy technique to extract the negative examples, and
EM algorithm is used to train the classifier iteratively. Roc-
SVM (Rocchio-Support Vector Machine) [Li and Liu, 2003]

extracts the reliable negative examples by using the infor-
mation retrieval technique Rocchio [Rocchio, 1971]. In this
category, except for positive examples and the extracted ex-
amples, the rest ambiguous examples are excluded from the
training process. Therefore, the performance may be limited.

The second group of work does not include the iterative
framework. For example, one-class classification method
[Scholkopf et al., 2001] is proposed to build an one-class
classifier by using only the positive examples. Since the unla-
belled data information is not considered, the one-class classi-
fier is always inferior to the binary classification-based meth-
ods [Li and Liu, 2003]. Another example is LELC [Li et al.,

2009]. LELC clusters the ambiguous examples into micro-
clusters, and then assigns a whole micro-cluster of examples
to the class which the micro-cluster is closer to. However,
there may be some micro-clusters in which some examples
are biased to the positive class and the other examples are
closer to the negative class. In such case, enforcing the micro-
cluster to any of the two classes may lead to misclassification.

In this paper, we propose a similarity-based PU learning
method. Compared to the works in the first group, our pro-
posed method explicitly incorporates the ambiguous exam-
ples to improve the classification accuracy of PU learning.
Furthermore, rather than enforcing the ambiguous examples
to either class, as some of the second group’s works do, we in-
corporate the ambiguous examples in the training by measur-
ing their similarity to the positive class and the negative class,
such that the classification boundary can be refined based on
the similarity information.

2.2 Support Vector Machine

SVM [Vapnik, 1998] has been proven to be a powerful clas-
sification tool. We briefly review SVM as follows.

Let S = {(x1, y1), (x2, y2), . . . , (x|S|, y|S|)} be a training

set, where xi ∈ Rd and yi ∈ {+1,−1}. SVM aims at seeking
an optimal separating hyperplane w · φ(x) + b = 0, where
φ(x) is the image of example x in the feature space. The
optimal separating hyperplane can be obtained by solving the
following optimization function:

min F (w, b, ξi) =
1
2w · w + C 1

2

∑|S|
i=1 ξi

st. yi(w · φ(xi) + b) ≥ 1− ξi,

ξi > 0, i = 1, . . . , |S|. (1)

where ξi are variables to relax the margin constraints, and
C is a parameter to balance the classification errors. By
introducing the Lagrange function [Vapnik, 1998], the de-
cision classifier can be obtained. For a test example x, if
w · φ(x) + b > 0, it is classified into the positive class; other-
wise, it is negative.

In the following, we will extend SVM to incorporate the
examples with similarity weights into a learning phase, such
that the ambiguous examples can contribute differently to the
classifier construction.

3 Preliminary

Let S be a training set of a PU learning problem. Assume that
PS and US store the positive examples and the unlabelled
examples, respectively. Hence, we have S = PS ∪ US.

For the ambiguous examples, since we do not know which
class it should belong to, we represent an ambiguous example
x using a similarity-based data model:

{x, (m+(x),m−(x))}, (2)

where m+(x) and m−(x) are similarity weights which rep-
resent the similarity of x towards the positive class and the
negative class, respectively. We have 0 ≤ m+(x) ≤ 1
and 0 ≤ m−(x) ≤ 1. {x, (1, 0)} means that x is positive,
while {x, (0, 1)} indicates that x is identified to be negative.
For {x, (m+(x), m−(x))}, where 0 < m+(x) < 1 and
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0 < m−(x) < 1, it implies that the similarity of x towards
the positive class and the negative class is both considered.

By using the similarity-based data model, we can generate
similarity weights for the ambiguous examples based on the
positive and extracted negative examples. These ambiguous
examples and their similarity weights are thereafter incorpo-
rated into an SVM-based learning model.

4 Similarity-Based PU Learning Approach

In this section, we will introduce the proposed approach in de-
tails. The PU learning aims at constructing a classifier by us-
ing the positive examples and the unlabelled examples. It has
been found various applications in text mining area. Based on
the similarity-based data model introduced in Section 3, our
proposed SPUL approach works in the following three steps.

1. In the first step, we extract the reliable negative exam-
ples and build the representative positive and negative
prototypes.

2. In the second step, we cluster the remaining unlabelled
data (ambiguous examples) into micro-clusters and as-
sign similarity weights to the ambiguous examples. The
local similarity-based and global similarity-based mech-
anisms are proposed to generate the similarity weights.

3. In the third step, we extend the standard SVM to in-
corporate the ambiguous examples and their similarity
weights into the learning phase to build a more accurate
classifier.

In the following, we present the detailed information of the
above three steps.

4.1 Step 1: Negative Example Extraction

In the first step, we extract the reliable negative examples and
put them in subset NS. Together with the positive examples,
those negative examples are used to set up the representative
positive prototypes and negative prototypes.

First of all, we extract the reliable negative examples from
the unlabelled data. As LELC, we integrate the Spy tech-
nique [Liu et al., 2002] and the Rocchio technique [Li and
Liu, 2003] to extract the most reliable negative examples. Let
subsets S1 and S2 contain the corresponding reliable nega-
tive examples extracted by the Spy technique and the Roc-
chio technique. Examples are classified as reliable negative
only if both techniques agree that they are negative. That is,
NS = S1 ∩ S2, where subset NS contains the reliable neg-
ative examples. After the reliable negative examples are de-
termined, we get rid of them from the unlabelled data subset,
i.e., US = US −NS.

Furthermore, the representative positive prototypes and
the representative negative prototypes are then set up
by clustering the reliable negative examples into micro-
clusters. Specifically, K-mean clustering is used to clus-
ter the examples in NS into m micro-clusters, denoted as
NS1, NS2, . . . , NSm where m = t ∗ |NS|/(|US|+ |NS|)
and t is set to be 30 in the experiments, as recommended in
[Buckley et al., 1994; Li et al., 2009]. Then, the kth represen-
tative positive prototype, denoted as pk, and the kth represen-
tative negative prototype, denoted as nk, are built as follows:

Pi
ni

Posi tive

Negative

micro-cluster 1 micro-cluster 2

micro-cluster 3

micro-cluster 4

Figure 1: Illustration of similarity weight assignment to the
micro-clusters in the local generation scheme. “+” represents
the positive example. “-” denotes the reliable negative exam-
ple. “o” stands for the ambiguous example.)

pk = α 1
|PS|

∑
x∈PS

x
‖x‖ − β 1

|NSk|

∑
x∈NSk

x
‖x‖ , (3)

nk = α 1
|NSk|

∑
x∈NSk

x
‖x‖ − β 1

|PS|

∑
x∈PS

x
‖x‖ , (4)

k = 1, . . . ,m.

where ‖ x ‖ represents the norm of example x; parameters α
and β are set to be 16 and 4, respectively, as recommended in
[Buckley et al., 1994; Li et al., 2009].

After Step 1, we obtain the reliable negative examples in
NS, m representative positive prototypes pk and m repre-
sentative negative prototypes nk.

4.2 Step 2: Similarity Weight Generation

In this step, we aim at creating two similarity weights m+(x)
and m−(x) for the examples in subset US, such that the am-
biguous examples can be incorporated into the training phase
by considering their similarity to the positive class and the
negative class. Specifically, we first cluster the examples in
subset US into r micro-clusters, i.e., US1, US2, . . . , USr,
where r is set as r = t ∗ |US|/(|US| + |NS|) and again
we set t to be 30 in the experiments. Then, the similarity
weights m+(xi) and m−(xi) are generated for each exam-
ple in subsets USi (i = 1, . . . , r). To generate the similarity
weights, we put forward the local similarity-based and global
similarity-based schemes in the following.

Local Similarity Weight Generation Scheme

In this scheme, we generate the similarity weights by captur-
ing the local data information. For each micro-cluster USj

(j = 1, 2, . . . , r), we assume that there are ljp examples simi-

lar to the closest positive prototype pk, and ljn examples sim-
ilar to the closest negative prototype nk. That is, for the ljp
examples, we have

maxmk=1 Sim(x, pk) > maxmk=1 Sim(x, nk) (5)

where Sim(., .) is calculated as Sim(x, pk) =
x·pk

‖x‖·‖pk‖
. Sim-

ilarly, for the ljn examples, we have

maxmk=1 Sim(x, pk) < maxmk=1 Sim(x, nk). (6)

Based on the above functions, the similarity weights for
ambiguous data in USj are calculated as
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m+(xi) =
ljp

l
j
p+l

j
n

, xi ∈ USj (7)

m−(xi) =
ljn

l
j
p+l

j
n

, xi ∈ USj (8)

Figure 1 presents an example of assigning the similarity
weights to ambiguous data. Based on Equations (7) and (8),
the examples in micro-clusters 1, 2, 3 and 4 are assigned with
weights (1, 0), (0, 1), (58 ,

3
8 ) and (13 ,

2
3 ), respectively. Distin-

guished from LELC, which directly assigns a whole micro-
cluster of examples to one class, SPUL allows the ambiguous
examples having different weights associated with the posi-
tive class and the negative class, such that the similarity of
ambiguous examples towards the two classes can be consid-
ered. The advantage of the local generation scheme is that it is
simple to implement. However, it can not distinguish the dif-
ference of examples in the same micro-cluster. The examples
from the same micro-cluster have exactly the same weights
towards the two classes. In fact, the similarity weights of ex-
amples from the same micro-cluster can be different, since
they are located physically different.

Global Similarity Weight Generation Scheme

To consider the location of ambiguous examples, we further
propose a global generation scheme to assign weights to am-
biguous examples.

For the ambiguous example xi in subset US, we first cal-
culate its similarity to each of the representative positive and
negative prototypes. That is,

Sim(xi, pk) =
xi·pk

‖xi‖·‖pk‖
, k = 1, 2, . . . ,m (9)

Sim(xi, nk) =
xi·nk

‖xi‖·‖nk‖
, k = 1, 2, . . . ,m. (10)

For xi ∈ US, the corresponding weights towards the posi-
tive class and the negative class are computed as follows:

m+(xi) =
∑m

k=1
Sim(xi,pk)∑

m
k=1

(Sim(xi,pk)+Sim(xi,nk))
, (11)

m−(xi) =
∑

m
k=1

Sim(xi,pk)∑
m
k=1

(Sim(xi,pk)+Sim(xi,nk))
. (12)

The global generation scheme treats each ambiguous ex-
ample in subset US differently and the weights are calculated
based on the locations of examples towards the representative
positive and negative prototypes, respectively. As shown in
the experiments, the global generation scheme outperforms
the local generation scheme.

4.3 Step 3: SVM-Based Classifier Construction

After performing the above two steps, each ambiguous exam-
ple is assigned two similarity weights: m+(xi) and m−(xi).
In the following, we will give a novel formulation of SVM by
incorporating the data in positive set PS, negative set NS,
ambiguous example set US and the similarity weights into
an SVM-based learning model.

Primal Formulation

Since the similarity weights m+(xi) and m−(xi) indicate the
different degrees of similarity for an ambiguous example to-
wards the positive class and the negative class, respectively,
the optimization function can be formulated as follows:

min F (w, b, ξ)

= 1
2w · w + C1

∑
PS ξi + C2

∑
US m+(xj)ξj

+C3

∑
US m−(xk)ξk + C4

∑
NS ξg

s.t. w · φ(xi) + b ≥ 1− ξi, xi ∈ PS

w · φ(xj) + b ≥ 1− ξj , xj ∈ US

w · φ(xk) + b ≤ −1 + ξk, xk ∈ US

w · φ(xg) + b ≤ −1 + ξg, xg ∈ NS

ξi ≥ 0, ξj ≥ 0, ξk ≥ 0, ξg ≥ 0, (13)

where C1, C2, C3 and C4 are penalty factors controlling the
tradeoff between the hyperplane margin and the errors. ξi, ξj ,
ξk and ξg are the error terms. m+(xj)ξj and m−(xk)ξk can
be considered as errors with different weights. Note that, a
smaller value of m+(xi) can reduce the effect of parameter ξi,
so that the corresponding example xi becomes less significant
towards the positive class.

Dual Problem

Assume that αi, αj , αk and αg are Lagrange multipliers. To
simplify the presentation, we redefine some notations in the
following:

α+
i =

{
αi, xi ∈ PS

αj , xj ∈ US
C+

i =

{
C1, xi ∈ PS

C2m
+(xj), xj ∈ US

α−
j =

{
αk, xk ∈ US

αg, xg ∈ NS
C−

j =

{
C2m

−(xk), xk ∈ US

C3, xg ∈ NS

Based on the above definitions, we let S+ = PS ∪ US,
S− = US ∪NS and S∗ = S+ ∪ S−. The Wolfe dual of (13)
can be obtained as follows:

max F (α) =
∑

xi∈S∗

αi −
1
2

∑
xi,xj∈S∗

αiαjyiyjK(xi, xj)

s.t. 0 ≤ αi ≤ C+
i , xi ∈ S+

0 ≤ αj ≤ C−
j , xj ∈ S−∑

xi∈S+
αi −

∑
xj∈S−

αj = 0, (14)

where K(xi, xj) is the inner product of φ(xi) and φ(xj).
After solving the problem in (14), w can be obtained in the

following:

w =
∑

xi∈S+
α+
i φ(xi)−

∑
xj∈S−

α−
j φ(xj). (15)

By using Karush-Kuhn-Tucker conditions (KKT) [Vapnik,
1998], b can be obtained. For a test example, if f(x) =
w · φ(x) + b > 0 holds true, it belongs to the positive class.
Otherwise, it is negative.

5 Experiment

All the experiments are performed on a laptop with a 2.8 GHz
processor and 3GB DRAM.

5.1 Baselines and Metrics

We implement two variants of our proposed method, i.e., lo-
cal similarity-based PU learning (Local SPUL) and global
similarity-based PU learning (Global SPUL). For compari-
son, another three methods are used as baselines. The first
one is Spy-EM [Liu et al., 2002], which uses Spy technique
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Table 1: Average F-measure values on the nine sub-datasets.

Data Subset Global SPUL Local SPUL LELC Spy-EM Roc-SVM

Reuter-interest 0.597 0.556 0.543 0.335 0.496

Reuter-trade 0.595 0.574 0.552 0.348 0.514

Reuter-ship 0.632 0.607 0.596 0.537 0.588

WebKB-faculty 0.473 0.446 0.417 0.314 0.302

WebKB-course 0.449 0.426 0.407 0.376 0.366

WebKB-project 0.353 0.342 0.325 0.305 0.299

Newsgroups-mac.hardware-crypt 0.535 0.512 0.494 0.483 0.487

Newsgroups-graphic-space 0.672 0.658 0.626 0.614 0.605

Newsgroups-os-med 0.594 0.572 0.557 0.527 0.516

to extract negative examples and utilizes EM to construct the
classifier. The second one is Roc-SVM [Li and Liu, 2003],
which employs Rocchio method to extract the negative ex-
amples and builds an SVM classifier. Both methods exclude
the ambiguous examples from the training. The third one is
LELC [Li et al., 2009], which clusters the ambiguous exam-
ples into micro-clusters and assigns each micro-cluster to ei-
ther the positive class or the negative class. The third baseline
is used to demonstrate the capability of our method in coping
with the ambiguous examples.

The performance of text classification is typically evalu-
ated based on F-measure [Liu et al., 2002]. F-measure trades
off the precision p and the recall r: F = 2pr

r+p
. Only when

both are large will F-measure exhibit a large value. A desir-
able algorithm should have a F-measure value closer to one.

5.2 Datasets and Settings

To evaluate the properties of our approaches, we conduct ex-
periments on three real-world datasets:

• Reuters-21578 1: This dataset contains 21578 docu-
ments. Since it is highly skewed, we follow the same op-
erations in [Fung et al., 2006] to select the top 10 largest
categories, i.e., “acq”, “corn”, “crude”, “earn”, “grain”,
“interest”, “money”, “ship”, “trade” and “wheat”. In all,
we have 9981 documents for the experiments.

• 20 Newsgroups 2: There are 20 sub-categories and each
sub-category has 1000 messages. For a fair comparison,
we have removed all the UseNet headers, which contain
the information of subject lines.

• WebKB 3: It has 8282 Web pages and 7 categories. The
dataset is slightly skewed. The number of Web pages in
different categories ranges from 3764 to 137.

For each of the above datasets, we conduct the following
operations to obtain sub-datasets for PU learning. We choose
a category (a) from a dataset (A), and randomly select g per-
centage of examples from this category (a) to form a positive
example set. The remaining examples in category (a) and
the examples from other categories are used to form an unla-
belled dataset.

By considering each category as the positive class, we ob-
tain 10 sub-datasets from Reuters-21578, 7 sub-datasets from

1http://www.daviddlewis.com/resources/testcollections/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data

WebKB and 20 sub-datasets from 20 Newsgroups. In addi-
tion, since the sizes of some categories are small, e.g., “corn”
category in Reuters-21578 only containing 238 examples, we
first set g = 15%, and then investigate the performance of
each method when g increases.

In the experiments, the linear kernel function K(xi, xj) =
xi · xj is used, since it generally performs well for text clas-
sification [Sebastiani, 2002]. In our Local SPUL and Global
SPUL methods, we let C1, C2, C3 and C4 range from 2−5

to 25. Moreover, t is set to be 30, as recommended in [Li et
al., 2009]. For the parameters contained in Spy-EM [Liu et
al., 2002], Roc-SVM [Li and Liu, 2003] and LELC [Li et al.,
2009], we adopt the settings in their own works.

5.3 Experimental Results

For each generated sub-dataset, we randomly select sixty per-
cent of data to form a training set, and the remaining data
forms a testing set. 10-fold cross validation is conducted on
the test set. To avoid sampling bias, we repeat the above pro-
cess for 10 times, and calculate the average F-measure values
for each sub-dataset. Since there are thirty two sub-datasets,
due to limited space, we only show the average F-measure
values on nine sub-datasets, as reported in Table 1. In Table
1, the listed sub-datasets are denoted as “A-a” format, where
“A” denotes the original dataset’s name, and “a” represents
the category which is used as the positive class. Note that, the
reported results are all consistent on the other sub-datasets.

As shown in Table 1, both of Global SPUL and Lo-
cal SPUL outperform the other baselines on the nine sub-
datasets. This is because our SPUL methods assigns similar-
ity weights to the ambiguous examples, so that the similarity
of ambiguous examples to the positive and negative classes
can be evaluated and contribute to the classifier construction.
In terms of our two variants Global SPUL and Local SPUL,
Global SPUL generally performs better than Local SPUL on
all the sub-datasets, since the former one generates similar-
ity weights based on the locations of ambiguous samples to-
wards the positive and negative prototypes, but the later one
just considers the votes of a micro-cluster towards the positive
and negative prototypes.

We further discover that, Spy-EM and Roc-SVM always
obtain lower accuracy, since they discard the ambiguous sam-
ples from training. Consequently, they are inferior to the
other methods. This is consistent with the findings in [Li et
al., 2009]. Furthermore, LELC method performs better than
Spy-EM and ROC-SVM, but worse than our methods. This
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Table 2: Overall F-measure values on the three real-world
datasets.

Baselines Reuter WebKB Newsgroups

Global SPUL 0.616 0.449 0.557

Local SPUL 0.591 0.418 0.534

LELC 0.562 0.401 0.505

Spy-EM 0.443 0.365 0.478

Roc-SVM 0.527 0.326 0.493

is because, though LELC takes the ambiguous samples into
learning the classifier, it simply enforces the micro-cluster
into either class, and misclassification may be incurred if
some of its examples are more biased towards the positive
class and the other examples are closer to the negative class.

In the above, we report the detailed results on the nine sub-
datasets. In the following, the average F-measure values of
the sub-datasets from the same dataset are also reported, as
shown in Table 2. Here, we can have similar findings to the
nine sub-datasets.

Moreover, Figure 2 illustrates the performance of each
method on the Reuter-interest sub-dataset when the percent-
age g of positive examples increases. As shown in Figure 2,
when g increases, the F-measure value of each method in-
creases. At the same time, it is observed that our Local SPUL
and Global SPUL methods consistently outperform the other
baselines.

6 Conclusions and Future Work
This paper proposes a similarity-based PU learning (SPUL)
method to handle the ambiguous examples by associating
them with two weights which imply the similarity of the am-
biguous examples towards the positive class and the nega-
tive class, respectively. The local similarity-based and global
similarity-based methods are presented to generate the simi-
larity weights for ambiguous examples. We then extend the
standard SVM to incorporate the ambiguous examples and
their similarity weights into an SVM-based learning phase.
Extensive experiments have shown the good performance of
our method.

In the future, we plan to exploit an online process to learn
the SPUL classifier in the streaming data environment.
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