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Abstract

Among various neural network language models (NNLMs), nesu neural network-based lan-
guage models (RNNLMs) are very competitive in many casesstMorrent RNNLMs only use
one single feature stream, i.e., surface words. Howevekiqus studies proved that language
models with additional linguistic information achieve tegtperformance. In this study, we extenc
RNNLM by explicitly integrating additional linguistic imrmation, including morphological, syn-
tactic, or semantic factors. Our proposed RNNLM is calledadred RNNLM that is expected to
enhance RNNLMs. A number of experiments are carried outshetv the factored RNNLM im-
proves the performance for all considered tasks: consiptplexity and word error rate (WER)
reductions. In the Penn Treebank corpus, the relative ivgonents over n-gram LM and RNNLM
are 29.0% and 13.0%, respectively. In the IWSLT-2011 TED A&R set, absolute WER reduc-
tions over RNNLM and n-gram LM reach 0.63 and 0.73 points.
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1 Introduction

Language models (LM) are a critical component of many apfibo systems such as automatic
speech recognition (ASR), machine translation (MT) andcaptharacter recognition (OCR). In

the past, statistical back-off n-gram language models sdgfhisticated smoothing techniques hav
gained great popularity because of their simplicity anddyperformance. In n-gram language
models, words are represented in a discrete space: theulacabStandard back-off n-gram lan-
guage models predict the following word based on the prexieliwords, which can be expressed
as,

p(Wilwi—lr R3] Wl) ~ p(wi |Wi—n+1: R Wi—l) (1)

Even though is usually limited to three or four, the number of parametera back-off n-gram
LM is still enormous. Assuming the vocabulary size6i¥K, a 4-gram language model needs
to estimates4K? bigrams,64K? trigrams ands4K* 4-grams. Due to data sparseness, many a
not observed during the training phase. This means thaam-¢Ms have poor generalization to
low-frequency and unseen n-grams. This problem becomes seMere as the vocabulary size
increases. Many interesting approaches have been propmss@rcome it in large vocabulary
continuous speech recognition (LVCSR) and statistical himectranslation systems, especially
smoothing techniques_(Chen and Goodman, 1996), classm-grguage modelm al.,
[1992), topic language models (Gildea and Hofmhann, 1999;:aistGlasd, 2006), structured lan-
guage models (Chelba and Jelinek, 2000), maximum entrogukge model id, 1boe)
and random forests language models (Xu and Jellnek] 2004).

Among these techniques, one of the most successful scheminesrieural network language mode!
(NNLM), such as the feed-forward NNLNL(Bengio ef al., 2008h#&enk| 2007; Kuo et & 12),
the recurrent NNLM (RNNLM)(Mikolov et &l 0, 201/1b) attte deep NNLM l.,
). Compared to other LMs, recurrent NNLMs, which areestd-the art .,

[2011h] Arisoy et dl), 2012), embed words in a continuousesjrmevhich probability estimation
is performed using artificial neural networks consistingngfut layer, single or multiple hidden
layers, and output layer. Due to consistent improvemergrms of perplexity and word error rate
and their inherently strong generalization, they have brexan increasingly popular choice for
LVCSR and statistical MT tasks.

Many of these RNNLMs only use one single feature stream dweface words, which are limited
to generalize over words without using linguistic inforioat including morphological, syntactic,
or semantic. In surface word RNNLMs, such words as “pricesl ‘grice" and “developed" and
“developing" are completely independent training insemdn this paper, we integrate additional
linguistic information into a RNNLM, called a factored RNNL, which can further improve the
generalization of RNNLM using multiple factors (or featsy®f words (stems, lemmas, parts-of-
speech, etc.) instead of surface forms of words as inputiarrent neural networks. Let us use ar
example to illustrate the shortcomings of surface word RNNLnh extreme cases, the training data
might only contain the following sentence: “differencevseén developed countries and develop
ing countries”. During training in the RNNLM that treats baword as a token in itself, the bi-gram
“developing countries” is a completely unseen instancewé¥er, for our factored RNNLM that
incorporates stem features, “developing countries” ligddo seen instances in a sense because
shares the same stem bi-gram “develop countri" with theipus\wbi-gram “developed countries."”
This coincides with our intuition; “developed" and “devpiog" should add knowledge to each
other during training. Our factored RNNLM may be more effeefor such morphologically rich



languages as Czech, Arabic, or Russian. In this paper, weemaluate it on English, and our
experiments show that it significantly enhances perforraaneasured in perplexity and WER.

To the best of our knowledge, few studies have been done srpthspective. Our approach
provides the following advantages:

e |t predicts the following word based on the entire historygdo a recurrent connection
between input and hidden layers) in the low-dimensionalasgntation (due to the neural
network architecture).

e Itintegrates the additional rich information of words irrfi@ular morphological and syntac-
tic features to overcome the data sparseness problem chydiedited in-domain training
data, such as in academic lecture ASR and MT tasks.

e It simultaneously interpolates all possible factors arelehtire history in stead of backing-
off to fewer factors and shorter context, which can addies®ptimization problem well in
factored n-gram language models.

e Since it converges faster than RNNLM due to the integratibadulitional features, it can
save several days of training if the training data are large.

This paper is organized as follows: We introduce relatedistuin Section 2. In Section 3, we
describe our proposed factored RNNLM in detail. Section@ishthe performance of our model
as measured by both perplexity and WER. We finally summanizdindings and outline future
plans in Section 5.

2 Related work

Recently, deep neural networks are experiencing signtficaprovements in the fields of image
processing, acoustic modelim@ml), laggymaodeling, etc. Neural network lan-
guage models to LVCSR were first presented_in_(Bengiolet 03P which was a feed-forward
NNLM with a fixed-length context consisting of projectiomput, hidden, and output layers.
|Arisoy et al. (2012) proposed a deep NNLM that uses multiptiién layers instead of single
hidden layer in feed-forward NNLMs. Furthermore, sevepaeddup techniques such as shortlists
regrouping and block models have been propds.e.d__(.S.QIhM)zeeed-forward NNLMs, which
predict following wordw; based on any possible context of length n-1 history, reméime of
n-gram language model.

Recurrent NNLM (RNNLM) (Mikolov et al.| 2010, 20111b), whidfas different architecture at

the input and output layers, can be considered as a deepl metinaork LMs because of its re-

current connections between input and hidden layers, wénetble RNNLMs to use their entire
history. Compared with feed-forward NNLMs, recurrent NNENeduce computational complex-
ity and have relatively fast training due to the factoriaatof the output layer. Other experiments
(Mikolov et all,|2011lal_Arisoy et all, 201P; Kuo ef al., 20 dmonstrated that RNNLM signifi-

cantly outperforms feed-forward NNLM. Therefore, this papises RNNLM as a baseline and
improves it by incorporating additional information othlean surface words, such as morphologi
cal or syntactic features.

Although few studies incorporate morphological and sytitdeatures into RNNLM, using multi-
ple features in language modeling is not novel. For exarﬁhlﬂ_a.n_d_lﬁmh.hgﬁl@(ﬂ@ presented




a factored back-off n-gram LM (FLM) that assumes each wortjisivalent to a fixed numbekK]

of factors, i.e.v = £, and produces a statistic model of the following foptf,"*|f,"X | . ).
The standard back-off in an n-gram LM first drops the mostadisword {v;_,,; in the case of
Eg. (1)), and then the second most distant word etc. untiutiigram is reached. However,
the factors in FLM occur simultaneously, i.e., without fang a temporal sequence, so the or:
der in which they should be dropped is not immediately obsiotn this case, FLM creates a
large space of back-off graphs that cannot be exhaustiesliched.|_Duh and Kirchhbff (2004)
employed a genetic algorithm (GA) that, however, providegoarantee of finding the optimal
back-off graph. Our factored RNNLM addresses this optitwzeproblem well, as described in
Section 3. In additiorl, Emami and Jelihek (2004); Alexasdreand Kirchhoffl(2006). Kuo et Al.
(2009);.Collins et &l..(2005) introduced various syntatatures into their feed-forward NNLMs
and discriminative language models. Table 1 summarizes,FRINNLM, and our approach from
three points of view.

Conditioning History Pros and Cons
variables
FLM Word and its lin- n-1 preceding Better than n-gram LM due to linguistic fea-
guistic features  history tures; Creating a large space of models that
cannot be searched exhaustively.
RNNLM  Word Entire history  Further enhancing FLM due to RNMNlaitec-

ture; Conditioning variables are only words,
no morphological or syntactic linguistic fea-
tures are used.
factored Word and its lin- Entire history = Combining the above merits, but more param-
RNNLM qguistic features eters and computation complexity, which ac-
tually does not cause problems, as described
in Section 4.4.

Table 1: Comparison of FLM, RNNLM, and factored RNNLM

[Koehn and Hoang (2007) introduced various features froguistic tools or word classes into
phrase-based MT models for better translation performance

3 Factored RNNLM

The architecture of our factored RNNLM is illustrated in Fiy It consists of input layer, hid-
den layers (state layer), and output layer. The connection weights among layers are denote
by matrixesU andW. Unlike RNNLM, which predicts probability (w;|w;_;,s;_;), our factored
RNNLM predicts probability?(w; |F(w;_;),s;_,) of generating following worav; and is explicitly
conditioned on a collection or bundle &ffactors of one preceding word. It is implicitly condi-
tioned on the factors of the entire history by the delay coyidden layer;_,. Here,F(w;_;) is
the vector concatenated frakhfactor vectorst* | (k =1, ..., K), f*, stands for the-th factor
vector encoded from thie-th factor of preceding wordzl-_l, and the funcuons of factor extraction
fk(-) are used to extract the corresponding factors. A word’®faatan be anything, including
the word itself, its morphological class, its root, and attyeo linguistic features. An example is
shown in Table 2.

In the input layer, the extracted factors are encoded irgdabtor vectors using the 1-afeoding.
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Figure 1: Architecture of factored recurrent NNLM.

Assume, for example, that the factor extracted by funcfitfw,_,) is them-th element in thé-th
factor vocabulary, which is then encoded £6|-dimension vectof* | by setting then-th element
of the vector to 1 and all the other elements to 0. HgfE|, stands for the size of theth factor
vocabulary. The& factor vectors are concatenated ifitov;_;) as expressed in Eq. (2). Finally,
the input layer is formed by concatenating factor vectps;_, ) of the preceding word/;_; and
hidden layes;_; at the preceding time step, as shown in Eq. (3).

Word: difference  between developed countries and devadopicountries
Lemma: difference  between developed country and devalopicountry
Stem: differ between develop countri and develop countfi
Part-of-speech NN IN JJ NNS CC VBG NNS

Table 2: An example of factor sequences.

F(Wi—l) = [fil_ly i2—1’ RRL3) ilil] (2)

x; = [F(w;_1), si1] (3)

Using the concatenation vector, our proposed factored RWIAN simultaneously integrate all

factors and the entire history in stead of backing-off todefactors and a shorter context. The
weight of each factor is represented in connection weightim&. Therefore, it can address the
optimization problem well in factored n-gram LM (Duh and &ihoff,|2004). In the special case
thatfil_1 is a surface word factor vector arﬁldi_l (k=2,...,K) are dropped, the factored RNNLM

goes back to the RNNLM.

Intt p://wwv. CI S. upenn. edu/ ~tr eebank/
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The hidden layer employs a sigmoid activation function:

st =fQ (x! xup)) Vme[1,H]
J

X @

14+e®

whereH is the number of hidden neurons in the hidden layergpdis an element in matrix/
denoting the corresponding connection weight.

Like (Goodmanl 2001; Mikolov et al., 2011b), we assume tlaahevord belongs to exactly one
class and divide the output layer into two parts: the firdhestes the posterior probability distri-
bution over all classes,

flz)=

ﬂ=ﬁ§@anvmnﬁ] 5)

whereC is the number of predefined classes. The second computesstezipr probability distri-
bution over the words that belong to claga;), the one that contains predicted word

m=a;@xmm Vo & [1,nc(w,)] ©)

wherenc(w;) is the number of words belonging to clags;) andw;; andw,; are the correspond-
ing connection weights.

To ensure that all outputs are between 0 and 1, and their sualssip1, the output layer employs
a softmax activation function shown below:
e

8(z4) = S e (7)

Finally, probabilityP(w;|F(w;_;),s;_;) is the product of two posterior probability distributions:

P(wi[F(W;_1),si-1) = P(c(W)IF(W;_1),5;_1) X P(w;[F(w;_1),s;_1,c(w;)) )

— 1 0
- yc |l=classid(c(wi ) X yW|o=wordid(W,~)

The architecture of splitting the output layer into two garan greatly speedup the training and th
test processes of RNNLM without sacrificing much perforneamdany word clustering techniques
can be employed. In this paper, we map words into classednetnency binninml.,

), which proportionally assigns words to classes dasetheir frequencies. The pseudo
codes are shown in Fig. 2.

3.1 Training

To use the factored RNNLM, connection weight matrikeandW must be learned. To learn them,
training is performed with the back-propagation throughetiBPTT) algorithmmmm) by
minimizing an error function defined in Eq. (9).

1 N
L=3 X (i =p Py x Qo + D w?) 9)
i=1 lk tl



#vocabl[i].cn denotes the number of the i-th word that occurs
#vocabli].classid denotes the class index of the i-th word
#nclass is the number of classes predefined
double df=0, a=0, b=0;
for (i=0; i<IVI; i++) b+=vocabli].cn;
for (i=0; i<IVI; i++) {
df+=vocabl[i].cn/b;
if (df>1) df=1;
if (df>(a+1)/nclass) {
vocabl[i].classid=a;
if (a<nclass-1) a++;
}
else {
vocabl[i].classid=a;
}
}

Figure 2: Frequency binningV| is the word vocabulary’s size.

whereN is the number of training instances, denotes the desired output; i.e., the probabilit
should be 1.0 for the predicted word in the training sentearoet 0.0 for all others. The first
part of this equation is the summed squared error betweeautpeit and the desired probability
distributions, and the second part is a regularization tiah prevents RNNLM from over-fitting
the training datay is the regularization term’s weight, which is determinegdenmentally using a
validation set.

The training algorithm randomly initializes the matrixexlaupdates them with Eqg. (10) over all
the training instances in several iterations. In Eq. (4/03tands for one of the connection weights
in the neural network ang is the learning rate. After each iteration, it uses valwolatiata for

stopping and controlling the learning rate. Usually, trtdeed RNNLM needs 10 to 20 iterations.

,Lpnew — ,Lpprevious - X a_L (10)
oY

3.2 Freeparameter & time complexity

To better understand the differences between RNNLM and actofed RNNLM, we compare
them in terms of the number of free parameters and compotttmmplexity of one training step
in Table 3.7 is the amount of steps used in BPTT.

Free Parameter Computational Complexity
RNNLM (1) (VI+H)xH+HXx (C+|V]) (1+H)XxHx7t+HX|V]
fRNNLM (2) (fF+ .+ 1Y+ H)xH+HXx(C+|V|]) (K+H)XHx7t+HX]|V|
Difference (2)-(1) (IfY|+...+If¥|=|V])xH (K—1)xHx7

Table 3: RNNLM vs. factored RNNLM (fRNNLM).

From this table we can observe that the factored RNNLM hasrfree parameters and larger
computational complexity. If the factored RNNLM only empsoword factor f1) and POS factors



(f?), then, it has39 x H additional free parameters. The additional computationaiplexity is
(K —1)x H x 7. In experimentsH is usually set t800 — 1000, 7 is usually set to 4|V| is
usually set to several hundreds of thousands. This meahsltkdV| > (K —1) x H x 7, and
the increased complexity can be neglected. Owing to thetiaddl free parameters, our factored
RNNLM converges faster and reduces training time. Sectidnshiows the exact running time
spent on experiments.

4 Experiments

In this section, we show the performance of our factored RMNds measured by perplexity.

After analyzing these results, we present the performareasuared by word error rate when the
factored RNNLM is used in a LVCSR system. In our experimemésimainly compare our factored
RNNLMs with a 4-gram LM with modified Kneser-Ney smoothingh@ and Goodman, 1996)
and RNNLM (Mikolov et al., 2011b). In the factored RNNLM, weviestigate four commonly

used types of factors: word, stAnlemmd and part-of-speech (POS).

For perplexity results, we use the WSJ portion of Penn TrelelaDC99T42). The WSJ portion
is divided into training (sections 00-20), heldout (setti@1-22), and test (sections 23- 24) set
containing 930K, 101K, and 97K words respectively. The wotary is limited to 10K words. This
setting is the same as that used by other stulies (Xu ane¥glA04| Mikolov et all, 2011b). The
sizes of the factor vocabularies in the training set are shiowTable H. Note that the word
vocabulary (10001 in Table 4) contains 10K words and oneiap@ken “<unk>" denoting words
not in the vocabulary.

Factors Word Lemma Stem POS
Sizes 10001 7356 6892 37

Table 4: Statistics of factor vocabularies.

4.1 Impactsof factors

This experiment analyzes the contribution from each fatidhe factored RNNLM in terms of
the perplexities on the heldout and test sets. We set the euafhidden neurons in the hidden
layer and the number of classes in the output layer for bahRINNLM and factored RNNLM to
320 and 300. Table 5 shows the experimental results. fRNMienotes the factored RNNLM
incorporating the word, stem, lemma, and POS factors, arfdrfo, the ratio is computed using

Vlsactored s “Wlwwiw ot indicates the percentage of additional parametersaimixr against
the RNNLM Subscrlpt numbers are the relative improvemews RNNLM.

From this table, we observe the following: (1) All of the faxetd RNNLMSs significantly improve
their performances. For example, the improvement of fRNNLMagainst the RNNLM on the
test set reaches 14.4%. (2) No significant differences arad@mong the factored RNNLMs
with various combinations of factors. The contributioreifrstem and lemma factors are less tha
1.0%. In particular, it is not necessary to use both stem emgila because they are very simila
and obviously do not complement each other. (3) Althoughsthe of the parts-of-speech is the

Inttp://tartarus. org/ ~martin/ Porter St enmer/

Shttp://Temmati zer. or g/ tur gl ent engl | Sh- description

“We directly use manually tagged parts-of-speech in the Fesmbank corpus. Section 4.6 investigates automaticall
tagged parts-of-speech.
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Ratio Heldout Test

4-gramLM 156.26 156.41
RNNLM - 146.94 145.63
fRNNLM,,, 0.4% 128.14, 4, 126.4%519,

fRNNLM,,,,  67.5% 127.09 40, 124.634.4
fRNNLM,,;,  72.0% 126.8% 7, 124.7643
fRNNLM g, 138.8% 126.06,5, 124.76,2

Table 5: Impacts of factors measured by perplexities.

smallest (only 37, Table 4), they have the largest impactoriaxtored RNNLM. The main reason
may lie in that syntactic factor (POS) has stronger compigareess to the surface word factor,
while morphological factors (stem and lemma) are too sintitathe word itself, limiting such
complementariness. Therefore, in the following experita@re only use word, stem, and POS in
our factored RNNLM.

For a better understanding of the contribution of each faotthe factored RNNLM, we do a quan-
titative analysis of the connection weight values. Thedassumption in this analysis is that if one
feature has a strong correlation or contribution to thediat RNNLM, the connections between
the input features to the hidden neurons have large valitee@ositive or negative corresponding
to positive or negative correlations). We show connectieigiwt matrixU (corresponding to the
logs of the absolute values of neural connection weightB)ds. 3 (a) and (b). The horizontal and
vertical axis denote the hidden neurons and the input featimensions. Since feature stream:
(word, stem, POS and history) are organized in blocks inim&trwe mark each feature stream in
blocks on the right vertical axis. In these figures, the catioe intensity is marked by color, the
brighter the color, the stronger the connection. From tligsges, we can see that the POS fea
ture stream shows the strongest connection intensity amabfgature streams. The POS feature
stream contributes the most to the factored RNNLM. HoweR&INLM (Mikolov et all,[2011b)
does not use it. In addition, the feature stream of the hisitso shows relatively strong intensity
that confirms that the entire history is important.

4.2 Hidden neurons

In this subsection, we evaluate the impacts from variouslbarmof hidden neurons in the hidden
layer. Table 6 shows the results of the heldout set and tlaéivelgains over the RNNLM. The
experiments prove that factored RNNLMs consistently reduerplexity. With increasing hidden
neurons, both RNNLM and fRNNLI,, enhance performance. The biggest improvement ov
RNNLM is 13.4%. The convergence column denotes the difiezari the fRNNLM and RNNLM
iterations, showing that factored RNNLM converges usingdieiterations. For example, RNNLM
converges after 15 iterations, while fRNNLM takes 12 iterations.

4.3 Convergence study

Figure 4 demonstrates the training progress of RNNLM andNRM,,;,,. In the same way, the
number of hidden neurons in the hidden layer and the numbelae$es are set to 320 and 300
respectively. From this figure, we can observe that fRNNL Mignificantly outperforms RNNLM
at all iterations, especially at iterations 1-4 where thpriovements exceed 20.0% and iteration:
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Figure 3: Neural connection weight intensity: between tripature and hidden neural nodes.

#Hidden neurons  RNNLM  fRNNLW;, Gain Convergence

60 163.71 147.00 10.2% -3
120 152.33 133.07 12.6% -2
240 147.74 128.75 12.8% -2
320 146.94 127.09 13.4% -1
480 143.18 126.70 11.5% -2
640 142.22 126.04 11.4% -1

1000 141.91 125.76 11.4% 0

Table 6: Impact from hidden layer on heldout data set.

5-10 where they exceed 15.0%, the final improvement reach&&4dl In other words, the relative



improvements decrease with increasing iterations.
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Figure 4: Convergence curve.

4.4 Running-time analysis

This subsection analyzes the time complexity of the two RNISLTable 7 shows the training time
of an iteration, the training time of all iterations, and thet time on a PC with 1006G of memory
and 24 2.66Ghz CPUs with 144 cores. We observe the followibhgNo significant difference
of elapsed time is found between RNNLM and fRNNLM during an iteration of training and
test stage. (2) RNNLM requires more time than fRNNLJMbecause it takes 18 iterations to
reach a convergence and fRNNL\ uses 16 iterations. This experiment shows that althoug
fRNNLM,,;, has more free parameters and time complexities (shown ite bt saves time
owing to its fast convergence.

An iteration during All iterations during During test

training training
RNNLM  48.92m 880m19s 29.18s
fRNNLM,,;, 49.58m 792m39s 29.35s

Table 7: Elapsed time during training and test. m=minutsesand.

45 Hybrid LM

In the experiments described above, RNNLMs are compared-{gram back-off n-gram language
model with modified Kneser-Ney smoothing trained using tRLM toolkit (ﬁ@,m). It
is also useful to interpolate the recurrent neural netwaitk & back-off n-gram language model
to reduce the perplexity and the word error rate. In the Valhg this interpolated model will be
denoted by a hybrid language model. Table 8 compares thedihNLMs in terms of perplexity.

This table demonstrates that the hybrid factored RNNLM adsdperforms the hybrid of

RNNLM, as we expected. For example, the perplexity reduastiof n-gram+fRNNLM over

n-gramLM+RNNLM on the heldout and test sets are 8.8% and 9.A8pectively, and n-

gramLM+fRNNLM largely improves the 4-gramLM on the heldand test sets by 28.9% and
29.6%.



Heldout Test

4-gramLM  156.26 156.41

RNNLM  146.94 145.63
fRNNLM,,;, 127.09 124.63
4-gramLM+RNNLM 121.89 121.62

4-gramLM+RNNLM,,, 1112054, 110.19 4

Table 8: Perplexities of hybrid language models.

4.6 N-best re-scoring

To evaluate the factored RNNLM in the context of large vodalyuspeech recognition, we use
the data sets for the IWSLT-2011 large vocabulary contisuspeech recognition shared task
(Eederico et 41201 1) to recognize TED talks publishednenED websi@ TED talks touch
on the environment, photography and psychology withoutddl to a single genre. This task
reflects the recent increase of interest in automaticadlggeribing lectures to make them eithel
searchable or accessible.

For LM, the IWSLT-2011 campaign defines a closed set of plybhwailable English texts, in-
cluding a small collection of TED transcriptions (in-domabrpus) and a large collection of news
sentences (general-domain). All training data are preggsed by a non-standard-word-expansio
tool that converts non-standard words (such as CO2 or 95%)eio pronunciations (CO two,
ninety five percent). The most frequent K0O@ords are extracted from the preprocessed corpor
which, with the CMU.v0.7a pronunciation dictionﬁmre used as the LM vocabulary. Our vocab
ulary contains 15K entries with an OOV rate of 0.78% on the test2010 data setthiéae-scoring
test, we use the IWSLT data sets of tests 2010 and 2011. Th#sties are shown in Table 9.

LM training data

#sentences #words
in-domain 124 2,06
general-domain  115,1@1 2,458,62&
Test sets
data #talks #utterances #words
test2010 11 1664 27K0
test2011 8 818 1214

Table 9: Summary of IWSLT2011 data sets

The acoustic models are trained on 170h speech segmentad’88 TED talks that were pub-
lished prior to 2011. We employ two types of schemes, a Hiddarkov Model (HMM) and a
Subspace Gaussian Mixture Model (SGMM) for each contegeddent phone and train them with
the Kaldi toolkit (Pavey et all, 2011). HMM consists of 6.7tates and 240K Gaussians that are
discriminatively trained using the boosted Maximum Mutlrdbrmation criterion. SGMM con-
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sists of 9.2K states. In addition, we apply speaker adaptaieing with feature space maximum
likelihood linear regression on top of the HMM and SGMM. Thewastic feature vectors have
40 dimensions. For each frame, we extract 13 static MFCJisesp adjacent frames, and apply
LDA to reduce its dimension with maximum likelihood lineaansform. For the in-domain and
general-domain corpora, modified Kneser-Ney smoothed@®4egram LMs are constructed using
SRILM (Stolcké 2), and interpolated to form a baselif@-aand 4-gram LMs by optimizing
the perplexity of the development data set.

First, we employ a Kaldi speech recognizer (Povey et al.1p@1decode each utterance using the
trained AM and the 3-gram LM. Second, we use the 4-gram LMdtiide re-scoring and generate
n-best lists. The n-best size is at most 100 for each utterdrinally, we use RNNLM and factored
RNNLM to re-score the n-best. Note that since it is very timasuming to train RNNLM and
factored RNNLM on large data, we only use the in-domain csffputraining them, and the corpus
is automatically tagged with parts—of-sp&mfore training fRNNLM,, and fRNNLM,,. The
best re-scoring results measured by word error rate are inated in Table 10. We also conduct
utterance-level significance tests.

test2010(%)  test2011(%)
4-gramLM  14.34 15.32

4-gram+RNNLM  14.12 15.22
4-gram+fRNNLM,,, 13.65 ,; 14.59 ( ¢3

Table 10: n-best re-scoring performance in word-errcg-r&ubscript numbers are the absolut:
improvements over RNNLM. indicates significantly better results than RNNLM at the p.&10
level using a two-sided t-test.

The experimental results show that fRNN|,Mand fRNNLM,, significantly improves upon
4-gram LM and RNNLM. For example, the absolute improvemaitéRNNLM,,;, over the
4-gram LM on the sets of tests 2010 and 2011 are 0.69 and O.n8poespectively. How-
ever, fRNNLM,,, doest not significantly outperforms fRNNL). Table 11 demonstrates the
re-scoring results sampled from RNNLM and fRNNLM This table shows that the results
of fRNNLM,,, are more grammatically fluent. Fig. 5 illustrates the abtgolmprovements of
fRNNLM,,, over RNNLM for each talk in the sets of tests 2010 and 2011.dpproach improves
most talks, expect talks 824 and 1183.

Conclusion

In this paper we follow the architecture of a state-of-thieracurrent neural network language
model (RNNLM) and present a factored RNNLM by integratingiéidnal morphological, syntac-

tic, and/or semantic information into RNNLM. Our approawhijch is a hybrid of factored n-gram

LM and RNNLM, addresses the problems in them. In experimewmtsinvestigate the influences
of four commonly used types of features on our factored RNNladrd, stem, lemma and part-
of-speech. We carry out many experiments to evaluate thtertt RNNLM performance and

analyze the influencing factors. Our experimental resutisgthat factored RNNLM consistently

outperforms n-gram LM and RNNLM for all considered tasks.
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model result

Reference orwe’'ll be here  all day with my childhood stories

RNNLM * THE WORLD WE'REall day with my childhood stories

fRNNLM,,,  or WILL be here  all day with my childhood stories

Reference but don’t worry if you can’t see it so well

RNNLM * * TILLER if you can't see it so well

fRNNLM,,,  * dontworry if you can't see it so well

Reference and so you're standing there and everything etk but  there’s this portal that you wanna jump in
RNNLM and so youre * STAYING IN ANYTHING else*f TO START there’s this portal that you WANT TO jump in
fRNNLM,,,  and so you're * STAYING IN ANYTHING elsés dark but there’s this portal that you WANT TO jump in
Reference AND by the way here are four doctors in your paefunited states who offer it and their phone numbers
RNNLM * by the way here are four doctors in your part of the edistates wh OFFEREDand their phone numbers

fRNNLM,,,  * by the way here are four doctors in your part of the unitedestavhooffer it and their phone numbers

Table 11: Re-scoring results sampled from RNNLM and fRNN|,M* denotes deletion errors,
capitalized words denote substitution errors, and unaedlivords show their differences.

1.5 14
1 4
0.5 -
O .
‘é\ B R R R A e
Y I
05 - tst2010 tst2011

Figure 5: Absolute improvement on each talk.

Recently, syntactic parse trees are used in many advances! ((Melba and Jelinek, 1998;

U.-2000; Xu etlal., 2002; Collins etlal., 2(Rastrow et 81, 2012). For future
work, we intend to investigate topic mformatlth ) and richer syntactic structure
features into factored RNNLM, such as context-free ruledpmtions, constituent/head features
and head-to-head dependencies that can be extracted @ssey pols. Second, neural networks
are notorious for being time consuming during trainingufatstudies will also focus on speeding
up the training of factored RNNLM using graphical proceggimits [Schwenk et al., 20112). Fur-
thermore, factored RNNLMs need to be evaluated on othesldskMT and with other languages
such as Czech, Arabic, and Turkish.
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