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Abstract— We present a generative domain of visual objects
by analogy to the generative nature of human language.
Just as small inventories of phonemes and words combine
in a grammatical fashion to yield myriad valid words and
utterances, a small inventory of physical parts combine in a
grammatical fashion to yield myriad valid assemblies. We apply
the notion of a language model from speech recognition to
this visual domain to similarly improve the performance of
the recognition process over what would be possible by only
applying recognizers to the components. Unlike the context-
free models for human language, our visual language models
are context sensitive and formulated as stochastic constraint-
satisfaction problems. And unlike the situation for human
language where all components are observable, our methods
deal with occlusion, successfully recovering object structure
despite unobservable components. We demonstrate our system
with an integrated robotic system for disassembling structures
that performs whole-scene reconstruction consistent with a
language model in the presence of noisy feature detectors.

I. INTRODUCTION

Human language is generative:1 a small inventory of
phonemes combine to yield a large set of words and then
this inventory of words combine to yield a larger set of
utterances. Systems that process language must deal with
the combinatorial nature of generativity. The probability of
correct word recognition becomes fleetingly small with even
a slight probability for error in phoneme recognition and the
probability of determining the correct parse of an utterance
becomes fleeting small with even a slight probability for error
in word recognition. This is remedied with a language model,
a specification of which combinations of phonemes constitute
valid words and which combinations of words constitute
valid utterances. Such a language model often takes the form
of a grammar.

The vast majority of computer-vision research in pose
estimation and object recognition deals with nongenerative
collections of objects. Such nongenerative collections require
distinct models or exemplars for each object (class) that
varies greatly in shape, structure, or appearance. We instead
present an approach for doing pose estimation and structure
recognition in generative visual domains, analogous to the
approach for human language. We illustrate this approach
with the domain of LINCOLN LOG assemblies. LINCOLN
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1We mean the Chomskyan sense of generative, not the sense in contrast
to discriminative. Indeed, while our domain is generative in the Chomskyan
sense, our recognizer uses a discriminative model.

LOGS is a children’s assembly toy with a small component
inventory. We limit this inventory to three component types:
1-notch, 2-notch, and 3-notch logs. These combine in myriad
ways to yield a large set of assemblies. We present low-level
feature detectors that collect evidence for the components in
a fashion analogous to low-level feature detectors in speech
recognizers. But as in speech, the probability of correct
recognition of an entire assembly becomes fleetingly small
with even a slight probability for error in log recognition.
We remedy this with a visual language model or a grammar
of LINCOLN LOGS, a specification of which combinations
of logs constitute valid assemblies.

The analogy breaks down in two ways requiring novel
methods. First, most computer models of speech and lan-
guage assume that the grammar is context free. This allows
a top-down tree-structured generative process where the gen-
eration of siblings is independent. In contrast, the symbolic
structure underlying LINCOLN LOG assemblies takes the
form of graphs with cycles and thus the visual language
model is context sensitive and is formulated as a stochastic
constraint-satisfaction problem. Second, in language, all of
the components are observable; at least in principle, one
can obtain perceptual evidence of each phoneme in a word
and each word in an utterance. In contrast, visual domains
exhibit occlusion; it is almost always necessary to determine
object structure without perceptual evidence for all of the
components. Our methods address both of these issues.
Our work builds upon the notion that scenes and objects
are represented as descriptions involving parts and spatial
relations [1]–[10], differing from prior work in the extreme
degree of generativity of the LINCOLN LOG domain. None
of this prior work focuses on domains that can generate as
large a class of distinct structures from as small a class of
components. Moreover, we focus on determining the precise
pose and structure of an assembly, including the 3D pose of
each component, with sufficient accuracy to support robotic
manipulation and, in particular, the ability to robotically
construct a symbolically precise replicate of a structure from
a single image.

LINCOLN LOG structures are composed out of a small
inventory of components, namely 1-notch, 2-notch, and 3-
notch logs. As shown in Fig. 1, such logs are characterized
by a small number of shape parameters: the inter-notch
distance l1, the log diameter l2, and the distance l3 from a log
end to the closest notch center. Valid structures contain logs
arranged so that their notches are aligned and their medial
axes are parallel to the work surface. Thus valid structures



Fig. 1. The 3D geometric shape parameters of LINCOLN LOGS.

have logs on alternating layers j at height l2( j+0.5) oriented
along one of two orthogonal sets of parallel lines spaced
equally with horizontal distance l1. The lines for even layers
are mutually parallel, the lines for odd layers are mutually
parallel, and the projections of a line from an even layer
and an odd layer onto the work surface are perpendicular.
We refer to this set of lines as the grid (see Fig. 2). This
grid imposes a symbolic structure on the LINCOLN LOG
assembly. Symbolic grid coordinates (i, j,k) map to metric
camera-relative coordinates (x,y,z) by the parameters l1, l2,
and l3 together with the structure pose: the transformation
from the grid coordinate system to the camera coordinate
system. Estimating the structure of a LINCOLN LOG as-
sembly thus reduces to two phases: estimating the structure
pose (section II) and determining the log occupancy at each
symbolic grid position (section III).

II. ESTIMATING THE STRUCTURE POSE

Before beginning these two phases, we first compute a
mask that separates the LINCOLN LOG structure in the image
foreground from the background. We manually collect 20–30
image segments of LINCOLN LOG components and compute
the mean µ and covariance Σ of the pixel values in these
segments in a five-dimensional color space UVHSI. We then
derive a mask M from an input image I containing those
pixels p with values whose Mahalanobis distance from µ is
less than or equal to a threshold t:

Mp =

{
1 ‖C(Ip)−µ‖Σ ≤ t
0 otherwise

where C denotes the map from input pixel values to UVHSI.
Nominally, the structure pose contains six degrees of

freedom corresponding to translation and rotation about each
axis. To simplify, we assume that the structure rests on the
horizontal work surface. Thus we fix vertical translation, roll
around the camera axis, and pitch around the horizontal axis
perpendicular to the camera axis to be zero, leaving only
three free parameters: horizontal translation of the structure
along the work surface and yaw around the vertical axis. To
resolve the periodic translation ambiguity in the symbolic
grid coordinate system, we assume that the minimum occu-
pied i, j, and k values are zero. We further assume that we
know the symbolic grid size: the maximum occupied i, j,
and k values.

Images of LINCOLN LOG assemblies contain a predomi-
nance of straight edges that result from log edges. Given this,
we estimate the structure pose in a two-step process. We first
find the pose p that maximizes the coincidence between the
set L(p) of projected grid lines lg and the set LI of image-
edge line segments li:

argmin
p

∑
li∈LI ,lg∈L(p)

‖li, lg‖

where ‖li, lg‖ denotes the Euclidean distance between the
midpoint of a line segment and its closest point on a line,
weighted by the disparity in orientation between the line
and the line-segment. We then refine this pose estimate by
maximizing the coincidence between projected grid lines and
the set PI of image edge points pi:

argmin
p

min
pi∈PI ,lg∈L(p)

‖pi, lg‖

where ‖pi, lg‖ denotes the Euclidean distance between a
point and the closest point on the line. We use a soft min
function [11]–[13] when computing the latter with gradient-
based methods (reverse-mode automatic differentiation [14]).

To obtain LI , we apply a Canny edge detector [15] together
with the KHOROS line finder [16] to extract linear edge
segments from the input image, discarding short segments
and those that do not lie wholly within the mask region
defined by M. We then select the edge segments corre-
sponding to the two most prominent edge orientations, by
placing the segments into bins according to their orientation
and selecting the edge segments in the two largest bins. To
obtain PI , we apply Phase Congruency [17] to the input
image I to compute the orientation image O(I). Each pixel
in O(I) contains a quantized orientation. We chose PI to be
those pixels whose quantized orientation is closest to the
mean edge-segment orientations of the above two largest
bins.

This two-step process offers several advantages. The first
step converges quickly but exhibits error in the recovered
prominent edge orientations. The second step estimates pose
more accurately (typically within 5mm translation and 2◦

rotation), but only with close initial estimates, such as those
provided by the first step.

Fig. 2 illustrates successful pose estimation of several
LINCOLN LOG structures. Note that we estimate the pose of
a target object from a single image without any knowledge
of the specific 3D shape or structure of that object, without
any prior training images of that object in different poses,
using only generic information from the domain, namely that
the object is a valid LINCOLN LOG assembly.

III. DETERMINING THE LOG OCCUPANCY AT EACH
SYMBOLIC GRID POSITION

The symbolic grid positions q = (i, j,k) refer to points
along log medial axes at notch centers. Each such grid
position may be either unoccupied, denoted by /0, or occupied
with the nth notch, counting from zero, of a log with m
notches, denoted by (m,n). For each grid position we wish to



Fig. 2. Estimating the pose of an arbitrary LINCOLN LOG assembly
and the symbolic grid thus imposed on the assembly.

Fig. 3. The random variables Z+
q and Z−q that correspond to log

ends for grid position q and the random variables Zu
q , Zv

q, and Zw
q

that correspond to log segments.

determine its occupancy, one of seven possibilities: /0, (1,0),
(2,0), (2,1), (3,0), (3,1), and (3,2). We construct a discrete
random variable Zq for each grid position q that ranges over
these seven possibilities.

We determine several forms of image evidence for the
log occupancy of a given grid position. LINCOLN LOGS,
being cylindrical structures, generate two predominant image
features: ellipses that result from the perspective projection
of circular log ends and line segments that result from
the perspective projection of cylindrical walls. We refer
to the former as log ends and the latter as log segments.
Log ends can potentially appear only at distance ±l3 from
grid positions along the direction for the layer of that
grid position. We construct boolean random variables Z+

q
and Z−q to encode the presence or absence of a log end at
such positions. There are two kinds of log segments: ones
corresponding to l1 and ones corresponding to l3. Given this,
we construct three boolean random variables Zu

q , Zv
q, and Zw

q
for each grid position q that encode the presence or absence
of log segments for the bottoms of logs, i.e., log segments
between a grid position and the adjacent grid position below.
Zu

q and Zv
q encode the presence or absence of a log segment

of length l3 behind and ahead of q respectively, along the
direction for the layer of q while Zw

q encodes the presence
or absence of a log segment of length l1−2l3 between grid
positions along the same layer. Fig. 3 depicts the log ends
and log segments that correspond to a given grid position as
described above.

We formulate a stochastic constraint-satisfaction problem
(CSP [18]) over these random variables. The constraints en-
code the validity of an assembly. We refer to these constraints
as the grammar of LINCOLN LOGS (section III-C). We take
image evidence to impose priors on the variables Z+

q , Z−q , Zu
q ,

Fig. 4. Elliptical edge filter for detecting log ends

Zv
q, and Zw

q (sections III-A and III-B) and solve this stochastic
CSP to perform structure estimation (section III-D).

A. Evidence for the presence or absence of logs

Given the pose p, a log end present as the result of Z+
q

or Z−q being true will manifest as an ellipse of known shape,
size, and position in the image. We use x+(p,q), y+(p,q),
a+(p,q), b+(p,q), and θ+(p,q) to denote the parameters
(center, lengths of major and minor axes, and orientation
of major axis) of an ellipse that would manifest from Z+

q
and similarly for Z−q . We find these parameters by a least-
squares fit of 20 equally spaced 3D points on the log end
projected to the image. The 3D points can be determined in
closed form from the grid position q and the parameters l1,
l2, and l3. We then construct an indicator function f (x,y)
with the value 1 for points (x,y) inside the ellipse and the
value 0 for points outside the ellipse and convolve this with
a Laplacian of a Gaussian filter, LoG(r,σ), to obtain an
elliptical edge filter E(x,y,a,b,θ) (Fig. 4). Nominally, a high
response to this filter applied to an image correlates with the
presence of an elliptical feature with parameters x, y, a, b,
and θ . To provide robustness in the face of inaccurate pose
estimation, we compute the maximal filter response in a 5-
dimensional region centered on x, y, a, b, and θ derived by
perturbing each axis a small amount.

Similarly, given the pose p, a log segment present as the
result of Zu

q , Zv
q, or Zw

q being true will manifest as a line
segment between known image points. We denote the points
for Zu

q as (xu
1(p,q),yu

1(p,q)) and (xu
2(p,q),yu

2(p,q)) and sim-
ilarly for Zv

q and Zw
q . These image points can be determined

in closed form by projecting the 3D points derived from the
pose p, the grid position q, and the parameters l1, l2, and l3.

In principle, we could use a similar filter method to
determine evidence for log segments. However, log ends
usually yield highly pronounced edges because logs are
never stacked horizontally end to end. Log are often stacked
vertically and the log segments between two such vertically
stacked logs would yield less-pronounced edges. Thus we
use a more sensitive method to determine evidence for log
segments. Given the pose p of the structure, we recompute
the prominent edge orientations o1 and o2 using the methods
from section II (this time applied to the output of the



second step of pose estimation, not the first, to give a more
accurate estimate of these orientations). For each prominent
orientation o, we compute the disparity between o and O(I)
at each pixel, compute the prominence at each pixel by
attenuating the disparity, and scale the energy image, E(I),
by this prominence: W (I,o) = E(I) ◦ cos2(O(I)− o). This
constitutes a graded edge map for edges with orientation o.
We search a rectangular region in W (I,o), after thresholding,
for the longest line segment. The search region corresponds
to a dilation of the rectangle bounded by the endpoints of the
target log segment. The length of the longest line segment
found correlates with the presence of the target log segment.

B. Mapping evidence to priors

We train a mapping function from evidence to priors for
the log-segment and log-end evidence functions respectively
on a set of 30 images annotated with ground truth, i.e.,
true positives and true negatives, along with occlusion. For
each evidence function, we bin their respective raw, real-
valued responses into 20 bins and annotate each bin with
the percentage of responses that are true positives and the
central response value for that bin. The annotated bins
correspond to a discrete sequence of impulses with impulse
magnitude representing the percentage of true positives for
the central response value. We then employ a weighted
linear interpolation function between impulses to provide the
mapping function. The weighting factor e typically takes the
form of a real value e ∈ (0,1).

C. The grammar of Lincoln Logs

We refer to the adjacent grid position below q as b(q),
the adjacent grid position further from the origin along
the direction of the grid lines for the layer of q as n(q),
and the adjacent grid position closer to the origin along
the direction of the grid lines for the layer of q as p(q).
Ignoring boundary conditions at the perimeter of the grid,
the grammar of LINCOLN LOGS can be formulated as the
following constraints:
a) 2-notch logs occupy two adjacent grid points

Zq = (2,0)↔ Zn(q) = (2,1)

b) 3-notch logs occupy three adjacent grid points

Zq = (3,0)↔ Zn(q) = (3,1)
Zq = (3,0)↔ Zn(n(q)) = (3,2)

Zn(q) = (3,1)↔ Zn(n(q)) = (3,2)

c) 1- and 2-notch logs must be supported at all notches

Zq ∈ {(1,0),(2,0),(2,1)}→ Zb(q) 6= /0

d) 3-notch logs must be supported in at least 2 notches

Zq = (3,0)→


(
Zb(q) 6= /0∧Zb(n(q)) 6= /0

)
∨(

Zb(q) 6= /0∧Zb(n(n(q))) 6= /0
)
∨(

Zb(n(q)) 6= /0∧Zb(n(n(q))) 6= /0
)


e) log ends must be at the ends of logs

Z−q ↔ Zq ∈ {(1,0),(2,0),(3,0)}
Z+

q ↔ Zq ∈ {(1,0),(2,1),(3,2)}

f) short log segments indicate occupancy above or below

Zu
q ↔

(
Zq 6= /0∨Zb(b(q)) 6= /0

)
Zv

q↔
(
Zq 6= /0∨Zb(b(q)) 6= /0

)
g) long log segments indicate presence of a multi-notch log

above or below

Zw
q ↔


(

Zq ∈ {(2,0),(3,0),(3,1)}∧
Zn(q) ∈ {(2,1),(3,1),(3,2)}

)
∨(

Zb(b(q)) ∈ {(2,0),(3,0),(3,1)}∧
Zb(b(n(q))) ∈ {(2,1),(3,1),(3,2)}

)


To handle the boundary conditions, we stipulate that the grid
positions beyond the perimeter are unoccupied, enforce the
support requirement (constraints c–d) only at layers above
the lowest layer, and enforce log-segment constraints (f–g)
for the layer above the top of the structure.

D. Structure estimation

To perform structure estimation we first establish priors
over the random variables Z+

q and Z−q that correspond to log
ends and the random variables Zu

q , Zv
q, and Zw

q that corre-
spond to log segments using image evidence and establish a
uniform prior over the random variables Zq. This induces
a probability distribution over the joint support of these
random variables. We then marginalize the random variables
that correspond to log ends and log segments and condition
this marginal distribution on the language model Φ. Finally,
we compute the assignment to the random variables Zq that
maximizes this conditional marginal probability.

argmax
Z

∑
Z+,Z−,Zu,Zv,Zw

Φ[Z,Z+,Z−,Zu,Zv,Zw]

Pr

(∧
q

Zq,Z+
q ,Z−q ,Zu

q ,Z
v
q,Z

w
q

)

To speed up the conditional marginalization process, we
prune assignments to the random variables that violate the
grammar Φ using arc consistency [19]. To speed up the
maximization process, we use a branch-and-bound algorithm
[20] that maintains upper and lower bounds on the maximal
conditional marginal probability. Without both of these,
structure estimation would be intractable.

An alternate method to perform structure optimization is
to establish the same priors over the random variables that
correspond to log ends and log segments but parametrize the
priors over the random variables Zq. We then marginalize
over all random variables, computing this marginal probabil-
ity over the parameterized priors for the random variables Zq.
We then search over this parameter space for the distributions
over the random variables Zq that maximize this marginal
probability. We do this using the reduced-gradient optimiza-
tion algorithm [21], [22] where the gradients are calculated
using reverse-mode AD. The linear constraints are used to
constrain the parameters of the probability distribution to be
nonnegative and sum to one. Ideally, we’d prefer to use the
latter method exclusively, but the former method is faster to
compute for the relatively larger assemblies when compared
to the latter.



E. Occlusion

Nominally, with the above method, one derives evidence
for the presence or absence of log ends and log segments
of the various kinds at every possible grid position. In other
words, one uses image evidence to impose a prior on all
of the random variables Z+

q , Z−q , Zu
q , Zv

q, and Zw
q . However,

some of these log ends and log segments may be occluded.
If we know that a log end or log segment is occluded then
we ignore all evidence for it from the image, giving it chance
probability of being occupied. With this, the grammar can
often fill in the correct values of occluded random variables
for both log ends and log segments, and thus determine
the correct value for an occluded Zq. The question then
arises: how does one determine whether a log end or log
segment is occluded? We propose the following method. One
first assumes that all of the log ends and log segments on
the frontal faces of the grid are visible but all other log
ends and log segments are occluded. One then performs
structure estimation under this initial hypothesis. With the
recovered structure estimate, one determines log-end and log-
segment visibility by projective geometry given the known
pose, and iterates this process until convergence. We have
recently implemented this algorithm and expect to report
on its performance in the future. All experiments reported
in section IV were performed with manual annotation of
occlusion information. Note that we only annotate for a given
symbolic log-segment or log-end position whether or not
it is visible, not whether or not that position is occupied
with a log segment or log end. The latter is determined
automatically.

IV. EXPERIMENTAL RESULTS

We took images of 32 distinct LINCOLN LOG structures,
each from 5 distinct poses resulting in a total of 160 images.
We performed foreground-background separation and pose
estimation for all 160 images using the methods from sec-
tion II. Pose was estimated within 5mm translation and 2◦

rotation of ground truth for 142 images. We discarded the 18
images with inaccurate pose estimation and performed struc-
ture estimation on the remainder. The results for 5 images,
all of distinct structures, are shown in Fig. 7. Fig. 7(a) was
derived by thresholding the priors on Z+

q , Z−q , Zu
q , Zv

q, and Zw
q

at t = 0.5. Fig. 7(b–d) were derived by solving a stochastic
CSP with various subsets of the constraints and rendering
the values of Z+

q , Z−q , Zu
q , Zv

q, and Zw
q for the solution

provided by the first method in section III-D. Fig. 7(e) was
derived by solving the stochastic CSP with all constraints
and rendering the values of Zq for the solution provided
by the first method in section III-D. Note that our method
determines the correct component type (Zq) of most occluded
logs in the assemblies in the second row of Fig. 7(e). It gives
an incorrect component type for only a single log in that row.

We conducted experiments to determine how much the
grammar improves the accuracy of structure estimation. We
performed variants of the runs in Fig. 7(a-d), varying the
threshold t and the mapping from evidence to priors to
produce the ROC curves depicted in Fig. 5. The mapping

Fig. 5. ROC curves. The lower green and red curves constitute the
ROC for the log-end and log-segment detectors respectively with
varying thresholds t without the grammar. The upper green curve
measures ROC for Z+

q and Z−q under constraints a–e varying the
mapping from evidence to priors. The upper red curve measures
ROC for Zu

q , Zv
q, and Zw

q under constraints a–d and f–g varying
the mapping from evidence to priors. The blue curve measures
ROC for Z+

q , Z−q , Zu
q , Zv

q, and Zw
q under all constraints varying

the mapping from evidence to priors.

function is varied through the weighting factor e for the linear
interpolator discussed in section III-B.

Pose and structure estimation is sufficiently robust to sup-
port robotic manipulation. Supplementary material included
on the website for this paper contains videos of fully au-
tonomous robotic disassembly of six different LINCOLN LOG
structures whose pose and structure have been determined
from a single image as well as videos of semiautonomous
robotic assembly of replicate LINCOLN LOG structures from
the same estimated pose and structure.

V. CONCLUSION

LINCOLN LOGS are children’s toys yet the computational
problem we present is not a toy. Pose and structure estimation
of LINCOLN LOG assemblies is far more difficult than
may appear on the surface. The space of objects to be
recognized is combinatorially large. Much of every structure
is in self occlusion. The low contrast due to shadows and
color, intensity, and texture uniformity make it impossible
to recognize even visible logs with existing techniques. No
standard edge detector (e.g., Canny [15] or PB [23]) can
reliably find edges separating adjacent logs or circular log
ends and no standard segmentation method (e.g., Normalized
Cut [24] or Mean Shift [25]) can reliably find log parts even
when fully visible as shown in Fig. 6. Even our filter-based
feature detectors, which use pose information along with
constraints from the language model to tune to the expected
feature at the expected image position, produce correct
binary decisions only about 65% of the time. Occlusion only
makes matters worse. Performing non-stochastic constraint
satisfaction (e.g., Waltz line labeling [26]) on the binary



(a) (b) (c) (d)

Fig. 6. A comparison with a number of standard edge detectors and segmentation methods. Neither (a) MATLAB’s Canny edge detector
nor (b) the PB edge detector reliably find edges separating adjacent logs or log ends. Neither (c) Normalized Cut nor (d) Mean Shift
segment out the log parts.

(a) (b) (c) (d) (e)

Fig. 7. (a) Raw detector response. (b) Detector response with just constraints a–d and f–g. (c) Detector response with just constraints
a–e. (d) Detector response with all constraints. (e) Estimated structure. In (a–d), bright red indicates true negative, dark red indicates false
negative, bright green indicates true positive, dark green indicates false positive, and blue indicates occlusion. In (e), green indicates true
positive and red indicates false negative. There are no false positives and true negatives are not indicated. We suggest that the reader view
this figure at a high magnification level in a PDF viewer to appreciate the images.



output of these detectors leads to inconsistent CSPs on all
images in our dataset.

We have demonstrated a visual domain that is generative
in much the same way that human language is generative.
We have presented a visual language model that improves
recognition accuracy in this domain in much the same way
that language models improve speech-recognition accuracy.
Unlike context-free models of human language, our visual
language models are context sensitive and formulated as
stochastic CSPs. Much of our visual experience in the ar-
tifactual world is perceiving generative man-made structures
like buildings, furniture, vehicles, etc. Our LINCOLN LOG
domain is a first step towards building visual language
models for such real-world domains.

Language models for vision are more complex than those
for human language as they must deal with occlusion result-
ing from perspective projection and pose variation. How-
ever, visual domains exhibit a novel possibility: recovering
structure despite occlusion by integrating the perceptual
evidence from multiple images of the same object taken from
different poses. In the LINCOLN LOG domain, one can carry
this even further. When faced with ambiguity arising from
occlusion, a robot can partially disassemble a structure to
view occluded substructure and integrate perceptual evidence
from multiple images taken at different disassembly stages
to yield a complete unambiguous estimate of the structure
of the original assembly prior to disassembly. Moreover, it
is possible to integrate information about pose or structure
from different modalities. One can integrate partial pose
and structure information from one or more images with
partial pose and structure information expressed in human
language to yield a complete unambiguous estimate of pose
and structure. We are, in fact, able to do this and expect to
report on this in the future.
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