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Abstract

Previous work on action recognition has focused on

adapting hand-designed local features, such as SIFT or

HOG, from static images to the video domain. In this pa-

per, we propose using unsupervised feature learning as a

way to learn features directly from video data. More specif-

ically, we present an extension of the Independent Subspace

Analysis algorithm to learn invariant spatio-temporal fea-

tures from unlabeled video data. We discovered that, despite

its simplicity, this method performs surprisingly well when

combined with deep learning techniques such as stack-

ing and convolution to learn hierarchical representations.

By replacing hand-designed features with our learned fea-

tures, we achieve classification results superior to all pre-

vious published results on the Hollywood2, UCF, KTH and

YouTube action recognition datasets. On the challenging

Hollywood2 and YouTube action datasets we obtain 53.3%

and 75.8% respectively, which are approximately 5% better

than the current best published results. Further benefits of

this method, such as the ease of training and the efficiency

of training and prediction, will also be discussed. You can

download our code and learned spatio-temporal features

here: http://ai.stanford.edu/∼wzou/

1. Introduction

Common approaches in visual recognition rely on hand-

designed features such as SIFT [24, 25] and HOG [4]. A

weakness of such approaches is that it is difficult and time-

consuming to extend these features to other sensor modal-

ities, such as laser scans, text or even videos. There is a

growing interest in unsupervised feature learning methods

such as Sparse Coding [31, 21, 34], Deep Belief Nets [7]

and Stacked Autoencoders [2] because they learn features

directly from data and consequently are more generalizable.

In this paper, we provide further evidence that unsu-

pervised learning not only generalizes to different domains

but also achieves impressive performance on many realistic

video datasets. At the heart of our algorithm is the use of In-

dependent Subspace Analysis (ISA), an extension of Inde-

pendent Component Analysis (ICA), both very well-known

in the field of natural image statistics [10, 41]. Experimen-

tal studies in this field have shown that these algorithms can

learn receptive fields similar to the V1 area of visual cor-

tex when applied to static images and the MT area of visual

cortex when applied to sequences of images [10, 40, 32].

An advantage of ISA, compared to the more standard

ICA algorithm, is that it learns features that are robust to

local translation while being selective to frequency, rotation

and velocity. A disadvantage of ISA, as well as ICA, is

that it can be very slow to train when the dimension of the

input data is large. In this paper, we scale up the original

ISA to larger input data by employing two important ideas

from convolutional neural networks [19]: convolution and

stacking. In detail, we first learn features with small in-

put patches; the learned features are then convolved with a

larger region of the input data. The outputs of this convo-

lution step are inputs to the layer above. This convolutional

stacking idea enables the algorithm to learn a hierarchical

representation of the data suitable for recognition [22].

We evaluate our method using the experimental pro-

tocols described in Wang et al. [42] on four well-known

benchmark datasets: KTH [37], Hollywood2 [26], UCF

(sport actions) [35] and YouTube [23]. Surprisingly, despite

its simplicity, our method outperforms all published meth-

ods that use either hand-crafted [42, 23] or learned features

[39] (see Table 1). The improvements on Hollywood2 and

YouTube datasets are approximately 5%.

Table 1. Our results compared to the best results so far on four

datasets (See Table 2, 3, 4, 5 for more detailed comparisons).

KTH Hollywood2 UCF YouTube

Best published 92.1% 50.9% 85.6% 71.2%

results

Our results 93.9% 53.3% 86.5% 75.8%

The proposed method is also fast because it requires only

matrix vector products and convolution operations. In our

timing experiments, at prediction time, the method is as fast

as other hand-engineered features.
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2. Previous work

In recent years, low-level hand-designed features have

been heavily employed with much success. Typical ex-

amples of such successful features for static images are

SIFT [24, 25], HOG [4], GLOH [27] and SURF [1].

Extending the above features to 3D is the predominant

methodology in video action recognition. These methods

usually have two stages: an optional feature detection stage

followed by an feature description stage. Well-known fea-

ture detection methods (“interest point detectors”) are Har-

ris3D [16], Cuboids [5] and Hessian [43]. For descrip-

tors, popular methods are Cuboids [5], HOG/HOF [17],

HOG3D [14] and Extended SURF [43]. Some other inter-

esting approaches are proposed in [38, 30]. Given the cur-

rent trends, challenges and interests in action recognition,

this list will probably grow rapidly.

In a very recent work, Wang et al. [42] combine var-

ious low-level feature detection, feature description meth-

ods and benchmark their performance on KTH [37], UCF

sports action [35] and Hollywood2 [26] datasets. To make a

fair comparison, they employ the same state-of-the-art pro-

cessing pipeline with Vector Quantization, feature normal-

ization and χ2-kernel SVMs. The only variable factor in

the pipeline is the use of different methods for feature de-

tection and feature extraction. One of their most interesting

findings is that there is no universally best hand-engineered

feature for all datasets; their finding suggests that learning

features directly from the dataset itself may be more advan-

tageous.

In our paper, we will follow Wang et al. [42]’s experi-

mental protocols by using their standard processing pipeline

and only replacing the first stage of feature extraction with

our method. By doing this, we can easily understand the

contributions of the learned features.

Recently, a novel convolutional GRBM method [39]

was proposed for learning spatio-temporal features. This

method can be considered an extension of convolutional

RBMs [22] to 3D. In comparison to our method, their learn-

ing procedure is more expensive because the objective func-

tion is intractable and thus sampling is required. As a conse-

quence, their method takes 2-3 days to train with the Holly-

wood2 dataset [26].1 This is much slower than our method

which only takes 1-2 hours to train. Our method is therefore

more practical for large scale problems.

Furthermore, our experimental procedure is different

from one proposed by Taylor et al. [39]. Specifically,

in Taylor et al. [39], the authors create a pipeline with

novel pooling mechanisms – sparse coding, spatial average

pooling and temporal max pooling. The two new factors,

learned features coupled with the new pipeline, make it dif-

ficult to assess the contributions of each stage.

Biologically-inspired sparse learning algorithms such

1Personal communications with G. Taylor.

as, Sparse Coding [31], Independent Component Analysis

(ICA) [9] and Independent Subspace Analysis [8] have long

been studied by researchers in the field of natural image

statistics. There has been a growing interest in applying

these methods to learn visual features. For example, Raina

et al. [33] demonstrate that sparse codes learned from un-

labeled and unrelated tasks can be very useful for recogni-

tion. They name this approach “self-taught learning.” Fur-

ther, Kanan and Cottrell [13] show that ICA can be used

as a self-taught learning method to generate saliency maps

and features for robust recognition. They demonstrate that

their biologically-inspired method can be very competitive

in a number of datasets such as Caltech, Flowers and Faces.

In [18], TICA, another extension of ICA, was proposed for

static images that achieves state-of-the-art performance on

NORB [20] and CIFAR-10 [15] datasets.

Biologically-inspired networks [11, 39, 12] have been

applied to action recognition tasks. However, except for

the work of [39], these methods have certain weaknesses

such as using hand-crafted features or requiring much la-

beled data. For instance, all features in Jhuang et al. [11] are

carefully hand-crafted. Similarly, features in the first layer

of [12] are also heavily hand-tuned; higher layer features are

adjusted by backpropagation which requires a large amount

of labeled data (see the Conclusion section in [12]). In con-

trast, our features are learned in a purely unsupervised man-

ner and thus can leverage the plethora of unlabeled data.

3. Algorithms and Invariant Properties

In this section, we will first describe the basic Indepen-

dent Subspace Analysis algorithm which is often used to

learn features from static images. Next, we will explain

how to scale this algorithm to larger images using convolu-

tion and stacking and learn hierarchical representations.

Also, in this section, we will discuss batch projected gra-

dient descent. Finally, we will present a technique to detect

interest points in videos.

3.1. Independent subspace analysis for static images

ISA is an unsupervised learning algorithm that learns

features from unlabeled image patches. An ISA network

[10] can be described as a two-layered network (Figure 1),

with square and square-root nonlinearities in the first and

second layers respectively. The weightsW in the first layer

are learned, and the weights V of the second layer are fixed

to represent the subspace structure of the neurons in the first

layer. Specifically, each of the second layer hidden units

pools over a small neighborhood of adjacent first layer units.

We will call the first and second layer units simple and pool-

ing units, respectively.
More precisely, given an input pattern xt, the ac-

tivation of each second layer unit is pi(x
t;W,V ) =

√

∑m

k=1
Vik(

∑n

j=1
Wkjx

t
j)

2. ISA learns parameters W

through finding sparse feature representations in the second
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Figure 1. The neural network architecture of an ISA network. The

red bubbles are the pooling units whereas the green bubbles are

the simple units. In this picture, the size of the subspace is 2: each

red pooling unit looks at 2 simple units.

layer, by solving:

minimize
W

P

T

t=1

P

m

i=1
pi(x

t; W, V ),

subject to WW T = I
(1)

where {xt}T
t=1
are whitened input examples.2 Here, W ∈

R
k×n is the weights connecting the input data to the simple

units, V ∈ R
m×k is the weights connecting the simple units

to the pooling units (V is typically fixed); n, k,m are the

input dimension, number of simple units and pooling units

respectively. The orthonormal constraint is to ensure the

features are diverse.

In Figure 2, we show three pairs of filters learned from

natural images. As can be seen from this figure, the ISA

algorithm is able to learn Gabor filters (“edge detectors”)

with many frequencies and orientations. Further, it is also

able to group similar features in a group thereby achieving

invariances.

Figure 2. Typical filters learned by the ISA algorithm when trained

on static images. Here, we visualize three groups of bases pro-

duced byW (each group is a subspace and pooled together).

One property of the learned ISA pooling units is that they

are invariant and thus suitable for recognition tasks. To il-

lustrate this, we train the ISA algorithm on natural static

images and then test its invariance properties using the tun-

ing curve test [10]. In detail, we find the optimal stimulus of

a particular neuron pi in the network by fitting a parametric

Gabor function to the filter. We then vary its three degrees

of freedom: translation (phase), rotation and frequency and

plot the activations of the neurons in the network with re-

spect to the variation. 3 Figure 3 shows results of the tuning

curve test for a randomly selected neuron in the network

with respect to spatial variations. As can be seen from this

figure, the neuron is robust to translation (phase) while be-

ing more sensitive to frequency and rotation. This combi-

nation of robustness and selectivity makes features learned

by ISA highly invariant [6].

2I.e., the input patterns have been linearly transformed to have zero

Figure 3. Tuning curves for ISA pooling units when trained

on static images. The x-axes are variations in transla-

tion/frequency/rotation, the y-axes are the normalized activations

of the network. Left: change in translation (phase). Middle:

change in frequency. Right: change in rotation. These three plots

show that pooling units in an ISA network are robust to translation

and selective to frequency and rotation changes.

In many experiments, we found that this invariant prop-

erty makes ISA perform much better than other simpler

methods such as ICA and sparse coding.

3.2. Stacked convolutional ISA

The standard ISA training algorithm becomes less effi-

cient when input patches are large. This is because an or-

thogonalization method has to be called at every step of pro-

jected gradient descent. The cost of the orthogonalization

step grows as a cubic function of the input dimension (see

Section 3.4). Thus, training this algorithm with high dimen-

sional data, especially video data, takes days to complete.

In order to scale up the algorithm to large inputs, we de-

sign a convolutional neural network architecture that pro-

gressively makes use of PCA and ISA as sub-units for un-

supervised learning as shown in Figure 4.

The key ideas of this approach are as follows. We first

train the ISA algorithm on small input patches. We then

take this learned network and convolve with a larger region

of the input image. The combined responses of the convo-

lution step are then given as input to the next layer which is

also implemented by another ISA algorithm with PCA as a

prepossessing step. Similar to the first layer, we use PCA

to whiten the data and reduce their dimensions such that the

next layer of the ISA algorithm only works with low dimen-

sional inputs.

In our experiments, the stacked model is trained greedily

layerwise in the same manner as other algorithms proposed

in the deep learning literature [7, 2, 22]. More specifically,

we train layer 1 until convergence before training layer 2.

Using this idea, the training time requirement is reduced to

1-2 hours.

3.3. Learning spatiotemporal features

Applying the models above to the video domain is rather

straightforward: the inputs to the network are 3D video

blocks instead of image patches. More specifically, we take

mean and identity covariance.
3In this test, we use image patches of a typical size 32x32.
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Figure 4. Stacked Convolutional ISA network. The network is

built by “copying” the learned network and “pasting” it to different

places of the input data and then treating the outputs as inputs to a

new ISA network. For clarity, the convolution step is shown here

non-overlapping, but in the experiments the convolution is done

with overlapping.

a sequence of image patches and flatten them into a vector.

This vector becomes input features to the network above.

To learn high-level concepts, we can use the convolution

and stacking techniques (see Section 3.2) which result in an

architecture as shown in Figure 5.

Figure 5. Stacked convolutional ISA for video data. In this figure,

convolution is done with overlapping; the ISA network in the sec-

ond layer is trained on the combined activations of the first layer.

Finally, in our experiments, we combine features from

both layers and use them as local features for classification

(previously suggested in [22]). In the experiment section,

we will show that this combination works better than using

one set of features alone.

3.4. Learningwith batch projected gradient descent

Our method is trained by batch projected gradient de-

scent. Compared to other feature learning methods (e.g.,

RBMs [7]), the gradient of the objective function in Eq. 1 is

tractable.

The orthonormal constraint is ensured by projection with

symmetric orthogonalization [10]. In detail, during opti-

mization, projected gradient descent requires us to project

W to the constraint set by computing (WWT )−
1

2 W . Note

that the inverse square root of the matrix usually involves

solving an eigenvector problem, which requires cubic time.

Therefore, this algorithm is expensive when the input di-

mension is large. The convolution and stacking ideas ad-

dress this problem by slowly expanding the receptive fields

via convolution. And although we have to resort to PCA for

whitening and dimension reduction, this step is called only

once and hence much less expensive.

Training neural networks is difficult and requires much

tuning. Our method, however, is very easy to train because

batch gradient descent does not need any tweaking with the

learning rate and the convergence criterion. This is in stark

contrast with other methods such as Deep Belief Nets [7]

and Stacked Autoencoders [2] where tuning the learning

rate, weight decay, convergence parameters, etc. is essential

for learning good features.

3.5. Normthresholding interest point detector

In many datasets, an interest point detector is neces-

sary for improving recognition and lowering computational

costs. This can be achieved in our framework by discarding

features at locations where the norm of the activations is

below a certain threshold. This is based on the observation

that the first layer’s activations tend to have significantly

higher norms at edge and motion locations than at static

and feature-less locations (c.f. [13]). Hence, by threshold-

ing the norm, the first layer of our network can be used as

a robust feature detector that filters out features from the

non-informative background:

If ‖p1(xt;W,V )‖1 ≤ δ then the features at xt are ignored.

here p1 is the activations of the first layer of the net-

work. For instance, setting δ at 30 percentile of the training
set’s activation norms means that 70% of features from the

dataset are discarded. In our experiments, we only use this

detector the KTH dataset where an interest point detector

has been shown to be useful [42]. The value of δ is chosen

via cross validation.

4. Feature visualization and analysis

In Section 3.1, we discussed spatial invariant properties

of ISA when applied to image patches. In this section, we

extend the analysis for video bases.

4.1. First layer

The first layer of our model learns features that detect

a moving edge in time as shown in Figure 6. In addition

to previously mentioned spatial invariances, these spatio-

temporal bases give rise to another property: velocity selec-

tivity.

We analyze this property by computing the response of

ISA features while varying the velocity of the moving edge.
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Figure 6. Examples of three ISA features learned from Holly-

wood2 data (16x16 spatial size). In this picture, each row consists

of two sets of filters. Each set of filters is a filter in 3D (i.e., a

row in matrixW ), and two sets grouped together to form an ISA

feature.

In detail, we fit Gabor functions to all temporal bases to

estimate the velocity of the bases. We then vary this veloc-

ity and plot the response of the features with respect to the

changes. In Figure 7, we visualize this property by plotting

the velocity tuning curves of five randomly-selected units in

the first layer of the network.

Figure 7. Velocity tuning curves of five neurons in a ISA network

trained on Hollywood2. Most of the tuning curves are unimodal

and this means that ISA temporal bases can be used as velocity

detectors.

As can be seen from the figure, the neurons are highly

sensitive to changes in the velocity of the stimuli. This

suggests that the features can be used as velocity detec-

tors which are valuable for detecting actions in movies. For

example, the “Running” category in Hollywood2 has fast

motions whereas the “Eating” category in Hollywood2 has

slow motions.

Informally, we can interpret filters learned with our ISA

model as features detecting a moving edge through time. In

particular, the pooling units are sensitive to motion – how

fast the edge moves – and also sensitive to orientation but

less sensitive to (translational) locations of the edge.

We found that the ability to detect accurate velocities is

very important for good recognition. In a control exper-

iment, we limit this ability by using a temporal size of 2

frames instead of 10 frames and the recognition rate drops

by 10% for the Hollywood2 dataset.

Not only can the bases detect velocity, they also adapt

to the statistics of the dataset. This ability is shown in Fig-

ure 8. As can be seen from the figure, for Hollywood2, the

algorithm learns that there should be more edge detectors in

vertical and horizontal orientations than other orientations.

Informally, we can interpret that the bases spend more ef-

fort to detect velocity changes in the horizontal and vertical

directions than other directions.

30
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240

90

270
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300
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330
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Figure 8. A polar plot of edge velocities (radius) and orientations

(angle) to which filters give maximum response. Each red dot in

the figure represents a pair of (velocity, orientation) for a spatio-

temporal filter learned from Hollywood2. The outermost circle

has velocity of 4 pixels per frame.

4.2. Higher layers

Figure 9. Visualization of five typical optimal stimuli in the second

layer learned from Hollywood2 data (for the purpose of better vi-

sualization, we use the size of 24x24x18 built on top of 16x16x10

first layer filters). Compare this figure with Figure 6

Figure 10. Comparison of layer 1 filters (left) and layer 2 filters

(right) learned from Hollywood2. For ease of visualization, we

ignore the temporal dimension and only visualize the middle filter.

Visualizing and analyzing higher layer units are usually

difficult. Here, we follow [3] and visualize the optimal

stimuli of the higher layer neurons.4 Some typical optimal

stimuli for second layer neurons are shown in Figure 9 and

4In detail, the method was presented for visualizing optimal stimuli of

neurons in a quadratic network for which the corresponding optimization

problem has an analytical solution. As our network is not quadratic, we

have to solve an optimization problem subject to a norm bound constraint

of the input. We implement this with minConf [36].
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Figure 10. Although the learned features are more difficult

to interpret, the visualization suggests they have complex

shapes (e.g., corners [22]) and invariances suitable for de-

tecting high-level structures.

5. Experiments

In this section we will numerically compare our algo-

rithm against the current state-of-the-art action recognition

algorithms. We would like to emphasize that for our method

we use an identical pipeline as described in [42]. This

pipeline extracts local features, then performs vector quan-

tization by K-means and classifies by χ2 kernel. With our

method, the only change is the feature extraction stage:

we replaced hand-designed features with the learned fea-

tures. Results of control experiments such as speed, ben-

efits of the second layer and training features on unrelated

data [33] are also reported. Further results, detailed com-

parisons and parameter settings can be seen in the Appendix

(http://ai.stanford.edu/∼wzou/).

5.1. Datasets

We evaluate our algorithm on four well-known bench-

mark action recognition datasets: KTH [37], UCF sport

actions [35], Hollywood2 [26] and YouTube action [23].

These datasets were obtained from original authors’ web-

sites. The processing steps, dataset splits and metrics are

identical to those described in [42] or [23]. The main pur-

pose of using identical protocols is to identify the contribu-

tions of the learned features.

5.2. Details of our model

For our model, the inputs to the first layer are of size

16x16 (spatial) and 10 (temporal). Our first layer ISA net-

work learns 300 features (i.e., there are 300 red nodes in

Figure 1). The inputs to the second layer are of size 20x20

(spatial) and 14 (temporal). Our second layer ISA network

learns 200 features (i.e., there are 200 red nodes in the last

layer in Figure 4). Finally, we train the features on 200000

video blocks sampled from the training set of each dataset.

5.3. Results

We report the performance of our method on the KTH

dataset in Table 2. In this table, we compare our test set

accuracy against best reported results in literature. More

detailed results can be seen in [42] or [12]. We note that

for this dataset, an interest point detector can be very useful

because the background does not convey any meaningful in-

formation [42]. Therefore, we apply our norm-thresholding

interest point detector to this dataset (see Section 3.5). Us-

ing this technique, our method achieves superior perfor-

mance compared to all published results in the literature.

There is an increase in performance between our method

(93.9%) and the closest competitive method (92.1%).5

Table 2. Average accuracy on the KTH dataset. The symbol (**)

indicates that the method uses an interest point detector. Our

method is the best with the norm-thresholding interest point de-

tector.
Algorithm Accuracy

(**) Harris3D [16] + HOG/HOF [17] (from [42]) 91.8%

(**) Harris3D [16] + HOF [17] (from [42]) 92.1%

(**) Cuboids [5] + HOG3D [14] (from [42]) 90.0%

Dense + HOF [17] (from [42]) 88.0%

(**) Hessian [43] + ESURF [43] (from [42]) 81.4%

HMAX [11] 91.7%

3D CNN [12] 90.2%

(**) pLSA [29] 83.3%

GRBM [39] 90.0%

Our method with Dense sampling 91.4%

(**) Our method with norm-thresholding 93.9%

Table 3. Mean AP on the Hollywood2 dataset.

Algorithm Mean AP

Harris3D [16] + HOG/HOF [17] (from [42]) 45.2%

Cuboids [5] + HOG/HOF [17] (from [42]) 46.2%

Hessian [43] + HOG/HOF [17] (from [42]) 46.0%

Hessian [43] + ESURF [43] (from [42]) 38.2%

Dense + HOG/HOF [17] (from [42]) 47.7%

Dense + HOG3D [14] (from [42]) 45.3%

GRBM [39] 46.6%

Our method 53.3%

Table 4. Average accuracy on the UCF sport actions dataset.

Algorithm Accuracy

Harris3D [16] + HOG/HOF [17] (from [42]) 78.1%

Cuboids [5] + HOG3D [14] (from [42]) 82.9%

Hessian [43] + HOG/HOF [17] (from [42]) 79.3%

Hessian [43] + ESURF [17] (from [42]) 77.3%

Dense + HOF [17] (from [42]) 82.6%

Dense + HOG3D [14] (from [42]) 85.6%

Our method 86.5%

Table 5. Average accuracy on the YouTube action dataset.

Algorithm Accuracy

Feature combining and pruning [23]: 71.2%

- Static features:

HAR + HES + MSER [28] + SIFT [25]

- Motion features:

Harris3D [16] + Gradients + PCA + Heuristics

Our method 75.8%

A comparison of our method against best published re-

sults for Hollywood2 and UCF sport actions datasets is

reported in Table 3 and 4. In these experiments, we only

consider dense sampling for our algorithm. As can be seen

from the tables, our approach outperforms a wide range of

5Our model achieves 94.5% if we use the interest point detector to fil-

ter out the background, then run feature extraction more densely than de-

scribed in [42].
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methods. The performance improvement, in case of the

challenging Hollywood2 dataset, is significant: 5%.

Finally, in Table 5, we report the performance of our al-

gorithm on the YouTube actions dataset [23]. The results

show that our algorithm outperforms a more complicated

method [23] on the dataset by a margin of 5%.

5.4. Benefits of the second layer

In the above experiments, we combine features from

layer 1 and layer 2 for classification. This raises a question:

How much does the second layer help?

To answer this question, we rerun the experiments with

the same settings and discard second layer’s features. The

results are much worse than previous experiments. More

specifically, removing the second layer features results in a

significant drop of 3.05%, 2.86%, 4.12% in terms of accu-
racy on KTH, UCF and Hollywood2 datasets respectively.

This confirms that features from the second layer are indeed

very useful for recognition.

5.5. Training and prediction time

Unsupervised feature learning is usually computation-

ally expensive, especially in the training phase. For in-

stance, the GRBM method, proposed by [39], takes around

2-3 days to train.6

In contrast, for the training stage, out algorithm takes 1-2

hours to learn the parameters on 200000 training examples

using the setting in Section 5.2.7

Feature extraction using our method is very efficient

and as fast as hand-designed features. In the following

experiment, we compare the speed of our method and

HOG3D [14] during feature extraction.8 This comparison

is obtained by extracting features with dense sampling on

30 video clips with a framesize of 360x288 from the Holly-

wood2 dataset.

Table 6. Feature extraction time. Our method with 2 layers on

GPU is 2x faster than HOG3D.
Algorithm Seconds/Frame Speed×

HOG3D [14] 0.22 base

Our method (1 layer) 0.14 1.6×

Our method (2 layers) 0.44 0.5×

Our method (2 layers, GPU) 0.10 2.2×

The results show that if we use one layer, our method

is faster than HOG3D. But if we use two layers, our algo-

rithm is slower than HOG3D. However, as our method is

dominated by matrix vector products and convolutions, it

can be implemented and executed much more efficiently on

a GPU. Our simple implementation on a GPU (GTX 470)

using Jacket9 enjoys a speed-up of 2x over HOG3D. Details

6Personal communications with G. Taylor.
7The timing experiments are done with a machine with 2.26GHz CPU

and 24Gb RAM.
8Provided on the author’s website.
9http://www.accelereyes.com/

of the comparison are given in Table 6.

5.6. Selftaught learning

In previous experiments, we trained our features on the

given training set. For instance, in Hollywood2, we trained

spatio-temporal features on the training split of 823 videos.

The statistics of the data on which features are trained are

similar to statistics of the test data.

An interesting question to consider, is how the model

performs when the unsupervised learning stage is carried

out on unrelated video data, for instance, videos down-

loaded from the Internet. This is the Self-taught learn-

ing paradigm [33]. To answer this question, we trained

the convolutional ISA network on small video blocks ran-

domly sampled from UCF and Youtube datasets. Using

the learned model, we extract features from Hollywood2

video clips and run the same evaluation metric. Under this

self-taught setting, the model achieves 51.1% AP on Holly-

wood2. While this setting performs less well than learning

directly from the training set (53.3%), it is still better than

prior art results reported in Wang et. al [42].

The encouraging result illustrates the ability of our

method to learn useful features for classification using

widely-available unlabeled video data.

6. Conclusion

In this paper, we presented a method that learns features

from spatio-temporal data using independent subspace anal-

ysis. We scaled up the algorithm to large receptive fields by

convolution and stacking and learn hierarchical representa-

tions.

Experiments were carried out with KTH, Hollywood2,

UCF sports action and YouTube datasets using a very stan-

dard processing pipeline [42]. Using this pipeline, we ob-

served that our simple method outperforms many state-of-

the-art methods.

This result is interesting, given that our single method,

using the same parameters across four datasets, is consis-

tently better than a wide variety of combinations of meth-

ods. It also suggests that learning features directly from data

is a very important research direction: Not only is this ap-

proach more generalizable to many domains, it is also very

powerful in recognition tasks.
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