
Activity Recognition with Finite State Machines

Wesley Kerr and Anh Tran and Paul Cohen

Computer Science Department
University of Arizona

{wkerr, trananh, cohen}@cs.arizona.edu

Abstract

This paper shows how to learn general, Finite State
Machine representations of activities that function
as recognizers of previously unseen instances of ac-
tivities. The central problem is to tell which differ-
ences between instances of activities are unimpor-
tant and may be safely ignored for the purpose of
learning generalized representations of activities.
We develop a novel way to find the “essential parts”
of activities by a greedy kind of multiple sequence
alignment, and a method to transform the result-
ing alignments into Finite State Machine that will
accept novel instances of activities with high accu-
racy.

1 Introduction

This work develops a representation of the structure of activ-
ities that is learnable and is general enough to correctly rec-
ognize previously unseen instances of activities. Generalizing
over instances of activities requires a way to discard “inessen-
tial” elements of instances. This is the central problem ad-
dressed in this paper. Section 2 describes how we represent
instances of activities and Section 3 presents a method for
generalizing over instances. Section 3.3 shows how to rep-
resent these generalizations as Finite State Machines which
may be used as recognizers. Section 4 presents empirical re-
sults on recognition accuracy. Related work is summarized in
Section 5.

2 Representing Instances of Activities

We describe activities in terms of propositions that have truth
values. For example, when approaching a box, the propo-
sition move-forward(agent) is true at times. We can repre-
sent an activity as a propositional multivariate time series
(PMTS), a two-dimensional array of binary elements, where
Pi,j = [0, 1] means that proposition Pi is false or true (0 or
1) at time j. An interval [j, j + τ ] during which a proposition
is true is called a fluent.

To illustrate our representations (and to keep further ex-
amples short), consider four fluents that might occur when
an agent approaches a box: C = collision(agent,box), D
= distance-decreasing(agent,box), F = move-forward(agent),

S = speed-decreasing(agent), V = visible(object,agent). A
PMTS representation of approach is shown in Figure 1. In
the first instant (the first column of the array), the visi-
ble(object,agent) and move-forward fluents are initated. In
the next, the distance-decreasing(agent-box) is initiated. This
fluent continues until the penultimate instant. In the final in-
stant, the collision(agent,box) fluent is initiated.

C 00000000000000000001
D 01111111111111111110
F 11111111111000000000
S 00000000000111111110
V 11111111111111111111

Figure 1: The PTMS for an instance of an approach.

This example is very simple. In general, we model ac-
tivities in terms of dozens of propositions, each of which
may occur during several contiguous intervals, or fluents. We
also have achieved good results with real-valued propositions,
Pi,j ∈ � (Sec. 4).

If we will be satisfied with an ordinal time scale for pat-
terns — a scale the preserves the order of changes to a propo-
sition’s status but not the durations of fluents — then we can
compress the PMTS into a compressed bit array (CBA) struc-
ture by removing identical consecutive columns, as shown in
Figure 2. The purpose of this compression is less to save
space than to produce an abstraction of the PMTS in which
patterns of changes that are identical but for their durations
are represented identically. Figure 3 is a CBA representation
of the PMTS in Figure 1 .

1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 0

0 1 1

Input Data CBA

p
1

p
2

p
1

p
2

Figure 2: Removing consecutive identical columns in a bit
array produces a compressed bit array (CBA).

3 Learning General Signatures of Activities

In many domains, we will observe variations in instances of
activities. Even simple activities, such as an agent approach-

1348

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



C 0001
D 0110
F 1100
S 0010
V 1111

Figure 3: The CBA representation for the approach example.

ing an object, may vary. Perhaps the object will not be visible
at the outset, or become occluded during the activity. Perhaps
the agent won’t slow down as it nears the object. In gen-
eral, instances of an activity will not have identical PMTSs or
CBAs. Some might include fluents that others do not include,
or the temporal relationship between fluents in one might be
different in another. These differences are increasingly likely
as we increase the number of propositions in the PMTSs.

If our only task is to accurately classify instances of activ-
ities, then the variations in instances need not be a problem.
However, our approach is to extract the “essence” or “proto-
type” of any activity from instances, not merely classify ac-
tivities.

Our approach will be to learn generalizations of instances
of activities. These generalizations will eventually be repre-
sented as finite state machines, and recognizing an activity
will be treated as transitions through a finite state machine
to reach an accepting state (Sec. 3.3). But before we get to
this representation, we will describe how to extract general-
izations of activities represented as CBAs.

We write a CBA for an instance of an activity as a qualita-
tive sequence, then use sequence alignment to find a signature
that best fits all the instances of the activity.

3.1 From CBAs to Qualitative Sequences

Qualitative sequences have two useful properties: They repre-
sent the temporal relationships between fluents, and they are
canonical in the sense that instances of an activity with iden-
tically ordered temporal relationships between fluents will
have identical qualitative sequence representations.

Relationships between fluents can be described by Allen
relations [Allen, 1983]. Allen recognized that, after eliminat-
ing symmetries, there are only seven possible relationships
between two fluents, shown in Figure 4. Allen relations are
qualitative in the sense that they represent the temporal order
of events, specifically, the beginnings and endings of fluents,
but not the durations of fluents.

The fluents in an instance may be sorted to generate a
canonical representation of the instance. Ordered fluents
(also called normalized fluents in [Winarko and Roddick,
2007]), are sorted according to earliest end time. If two flu-
ents finish at the same time, they are further sorted by earliest
start time, and if the start and end times are identical, then
they are sorted alphabetically by proposition name.

After ordering fluents as we just described, we construct
the Allen relations between all of the pairs of fluents in order,
as described in Algorithm 1. An illustrative instance and the
resulting qualitative sequence is shown in Table 1. The letters
F, D, S and C denote propositions, and an assertion such as (F
0 11) means that proposition F was true in the interval [0,11).

(x equals y)

(x meets y)

(x finishes-with y)

(x starts-with y)

(x overlaps y)

(x during y)

x
y

x
y

x
y

x
y

x
y

x
y

(x before y)
x
y

(x e y)

(x m y)

(x f y)

(x s y)

(x o y)

(x d y)

(x b y)

Figure 4: Allen Relations

Algorithm 1: MAKE-SEQUENCE(I)

S = ()
for i = 1 to size(I) do

for j = (i+ 1) to size(I) do
S ← S + allen(I[i], I[j])

end for
end for
return S

A qualitative sequence can be shortened by defining a win-
dow that determines how close any two intervals must be to
consider one before the other. This is known as the interac-
tion window. Assume that we have two intervals (p1 s1 e1)
and (p2 s2 e2) such that p1 and p2 are proposition names, s1
and s2 are start times, e1 and e2 are end times, and e1 < e2.
The two intervals are said to interact if s2 ≤ e1 +w where w
is the interaction window. If we set w = 1 in Table 1, then
we would remove the relation (F before C) .

Intervals Qualitative Sequence
(F overlaps D)

(F 0 11) (F meets S)
(D 1 20) (F before C)
(S 11 20) (D finishes-with S)
(C 20 21) (D meets C)

(S meets C)

Table 1: An instance of an activity comprising four intervals,
and the corresponding qualitative sequence.

3.2 From Qualitative Sequences to Signatures

Let Ec = {S1, S2, . . . , Sk} be a set of qualitative sequences
with the same activity label, C. We define the signature of
the activity label, Sc, as an ordered sequence of weighted
Allen relations. (The only difference between a signature and
a qualitative sequence is these weights.)

We select a sequence at random from Ec to serve as the
initial signature, Sc, and initialize all of its weights to 1. After
this, Sc is updated by combining it with the other sequences
in Ec, processed one at a time.

1349



Two problems are solved during the processing of the se-
quences in Ec. First, the sequences are not identical, so Sc

must be constructed to represent the most frequent relations
in the sequences. The weights in Sc are used for this pur-
pose. Second, because a relation can appear more than once
in a sequence Si, there can be more than one way to align Si

with Sc. These problems are related because the frequencies
of relations in Sc depend on how sequences are successively
aligned with it.

Updating the signature Sc with a sequence Si occurs in two
phases. In the first phase, Si is optimally aligned with Sc.
The alignment algorithm, described below, penalizes candi-
date alignments for elements in Sc that are not matched by
elements in Si, and rewards matches. These penalties and re-
wards are functions of the weights stored with the signature.
In the second phase, the weights in the signature Sc are up-
dated. If an element in Si is aligned with one from Sc, then
the weight of this element is incremented by one. Otherwise
the weight of the element is initialized to one and it is inserted
into Sc at the location selected by the alignment algorithm.

Updating the signature relies on the Needleman-Wunsch
global sequence alignment algorithm [Needleman and Wun-
sch, 1970]. The algorithm uses dynamic programming to find
an optimal alignment between two sequences. Alignments
are constructed by selecting operators that modify each se-
quence to look more like the other. Conventionally, sequence
alignment is based on three operators: Elements from two
sequences may match; an element may be deleted, or an ele-
ment may be inserted. However, to ensure that no information
from sequences in Ec is lost, we allow the sequence alignment
only to insert or match, not delete, elements. The costs of in-
sertion and matching are determined by the weights that are
stored with the signature as mentioned above.

Sc Aligned Si Aligned Sc Updated
− (C meets A) (C meets A) 1
− (C before B) (C before B) 1
− (C before C) (C before C) 1

(A finishes D) − (A finishes D) 1
(A overlaps B) (A overlaps B) (A overlaps B) 6

(A meets C) (A meets C) (A meets C) 6
(D overlaps B) − (D overlaps B) 1

(D meets C) − (D meets C) 1
(B overlaps C) (B overlaps C) (B overlaps C) 6

Table 2: Updating the signature Sc.

The process is illustrated in Table 2. Suppose that some
sequences have already been aligned with the signature Sc.
The sequence in column “Si Aligned” is first aligned opti-
mally with Sc, as shown; notice that this involves inserting
some “empty space” into both Sc and Si. Then the two are
merged, as shown in column “Sc Updated,” and the weights
associated with each Allen relation are updated.

Because the process of updating signatures first aligns
and then merges new sequences into Sc, signatures become
stuffed with large numbers of elements that occur very infre-
quently, and thus have low weights. We use a simple heuristic
to clean up the signature: After K training instances, all of the

relations in the signature with weights less than or equal to n
are removed. All of our experiments use K = 10 and n = 3,
meaning that the signature is pruned of all elements occurring
fewer than 4 times after a total of 10 training instances. The
signature is again pruned after 20 training instances, and so
forth.

3.3 From Signatures to Finite State Machines

The CBA in Figure 3 can be viewed as a finite state machine
(FSM) in which each column is a state, as shown in Figure 5.
However, it represents only a single instance of an activity.
What we want is a finite state machine that represents a gen-
eralization over multiple instances of an activity. Signatures
almost get us there, but signatures are sequences of Allen re-
lations between fluents, not sequences of states comprising
one or more fluents. We need a way to transform signatures
back into CBA-like sequences of states, where “unimportant”
fluents are discarded.

0
1
1
0
1

0
1
1
0
1

0
1
0
1
1

0
1
0
1
1

0
1
0
1
1

1
0
0
0
1

1
0
0
0
1

0
0
1
0
1

0
1
1
0
1

0
0
1
0
1

start

0
0
1
0
1

Propositions

C

D

F

S

V

Figure 5: An example of the activity approach CBA in Fig-
ure 3 represented as FSM recognizer.

Recall that a signature Sc is built from qualitative se-
quences Ec = {S1, S2, . . . , Sk}. Each Si is a sequence of
Allen relations, R(p, q), between fluents p and q, and each
relation R(p, q) has a weight in Sc. For each fluent p, find all
of the Allen relations R(p, q) or R(q, p), that is, all the Allen
relations in Si for which p is an argument. For each of these
Allen relations, find its weight in the signature Sc. If any of
these weights exceeds a threshold, then we “keep” p. But if
we cannot find a single Allen relation between p and another
fluent whose weight in Sc exceeds a threshold, then this tells
us that p is unimportant in Sc. Not only may it be discarded
from the qualitative sequence Si but, more importantly, it can
be discarded from the CBA and PMTS that gave rise to Si.
This procedure gives us a way to remove propositions from
CBAs like the one in Figure 3.

Having removed unimportant propositions from the CBAs
for each instance of an activity, and represented each of these
edited CBAs as a FSM as in Figure 5, we are likely to see that
these machines share states. It is then straightforward to build
a single FSM that merges the FSMs for individual instances.
This merged FSM is used as a recognizer for the activity. The
FSMs “accept” unlabeled activities as soon as they reach a
state which has no further transitions except back to the start
state. Every branch in the FSM will lead to one final state
reached at the end of the training instance, and all of these
states become accepting states for the FSM recognizer.

The number of states in the merged FSM can be further
reduced by applying a slightly modified NFA-to-DFA con-

1350



version algorithm on the FSM. The savings in the number of
states varies by activity, and reducing the states does not af-
fect the accuracy of the recognizer. An added benefit of the
optimization is that it does make the FSM significantly easier
to comprehend and manipulate.

4 Evaluation

The experiments reported here involve building FSM recog-
nizers for training instances of activities, then testing how ac-
curately the FSMs recognize previously-unseen activities. An
FSM is said to recognize an instance once it reaches any of
the accepting states.

For each learned FSM we count true positives, false posi-
tives, true negatives, and false negatives. True positives (tp)
occur when an FSM for activity i recognizes an instance
of activity i. False positives (fp) occur when an FSM for
activity i recognizes an instance of activity j. When an
FSM for activity i fails to accept an instance of activity j,
this is a true negative (tn). A false negative (fn) occurs
when an FSM rejects an instance that it should have ac-
cepted. Recall is defined as rec = tp/(tp + fn) and pre-
cision as prec = tp/(tp + fp). We report the F1 measure:
2(prec× rec)/(prec+ rec).

For each experiment, data are randomly split into training
and testing sets of instances. The proportion of the instances
put into the training set varied from 10% to 90%. The exper-
iment was ran 100 times for each of the following datasets.

Data

The first dataset is collected from Wubble World 3D (ww3d),
a virtual environment with simulated physics in which soft-
bots, called wubbles, interact with objects [Kerr et al., 2008].
The simulator collects distances, velocities, locations, colors,
sizes, and other sensory information about the world, and rep-
resents them as propositions.

We collected a dataset of different activities, each of which
consisted of several instances, e.g. several instances of a wub-
ble jumping over a box, jumping on a box, approaching a box,
pushing a box, moving around a box to the left, and mov-
ing around a box to the right. Instances were generated by
manually controlling a wubble to repeatedly perform one of
these activities. Each instance was unique, in that the wubble
would start closer or farther from the box, move more or less
quickly, and so on. The ww3d dataset consists of 37 instances
labeled jump over, 20 instances labeled jump on, and 25 in-
stances for each of the remaining activities. On average, each
instance lasts for 445 time steps, and consists of 40 proposi-
tions and 73 fluents. This results in qualitative sequences of
2,177 Allen relations, on average.

The second dataset is gathered from a two-dimensional vir-
tual environment – Wubble World 2D (ww2d) – in which
agents interact with each other, autonomously. We gave the
agents just four activities, which we selected to be difficult to
discriminate. The agents could engage in passing, colliding
and two kinds of talking activities. (The agents do not really
talk, but they approach each other and pause for a bit, where
presumably a conversation would take place, and then con-
tinue on their way.) In one kind of talk, the agents leave the
conversation on the same trajectories on which they entered;

in the other, they exit in the direction from which they en-
tered. The dataset ww2d consists of twenty unique instances
for each of the four activities. On average, each instance lasts
for 1073 time steps, consists of seven propositions and twelve
fluents. The average qualitative sequence length for an in-
stance is 46 Allen relations.

The third dataset comes from an individual’s handwriting.
A single subject was asked to write the letters of the alphabet
multiple times [Kerr, 2010]. The subject wrote on a Wacom
pen tablet and the x and y positions of the pen were sam-
pled at uniform time intervals. This dataset differs from the
others because the data is real-valued, not propositional. We
converted the data into propositional time series by applying
the SAX algorithm [Lin et al., 2007] as well as an algorithm
that outputs the shape of the time series, similar to the SDL
library [Agrawal et al., 1995]. In the handwriting dataset,
there are 21 instances of each of the 26 activities (one for
each letter of the alphabet). The average instance lasts over
69 time steps and comprises of 17 propositions and 33 flu-
ents. The average qualitative sequence length for an instance
is 304 Allen relations.

4.1 Results

The average recognition performance, summarized by the F1

score, is shown in Figure 6. Across all datasets, perfor-
mance increases very quickly as more training data is pro-
vided. For example the FSM recognizers constructed on the
ww3d dataset achieve an F1 score of 0.9, with narrow confi-
dence intervals, training on as few as four examples of each
activity. Activities in ww2d focus on the interaction between
two agents, and, as noted were designed to be difficult to dis-
criminate. As seen in Figure 6, we are able to reach F1 scores
around 0.8 when averaged across activity. The handwriting
dataset proved to be the most challenging. One reason for this
is that there are many more classes to learn, and the learning
algorithm is not discriminative, but, rather, learns common
patterns found within the positive examples of activities. An-
other reason has to do with the composite nature of activities.

Figure 6: Average F1 scores for all datasets.

1351



Suppose a test corpus contains instances of activities, but
one (or more) of these are components of others. For exam-
ple, one activity might be approach, which is a component of
another, such as jump-over. Or a looping movement in hand-
writing could be the letter “a” or a component of the letter
“d.” If the recognizer for the smaller activity fires during the
larger activity, then it will be counted as a false positive. This
effect is shown in Figure 7. We present the F1 score for each
of the activities in the ww3d dataset. We can clearly see that
the F1 score for the activity approach is constant and low,
regardless of the amount of training. This happens because
all of the activities in ww3d have approach as a component,
so whenever one of these activities happens and the approach
recognizer fires, it is penalized with a false positive.

One solution to the problem is to ignore all of the activities
that are components of more complex activities. This does
not solve the problem, it only sweeps it under the rug. A
better solution is to track the activities of all the recognizers
and combine or compare them over time. This solution is
discussed more in Section 6.

Figure 7: Average F1 scores for activities in ww3d.

5 Related Work

Most of the research on temporal patterns in interval time se-
ries focuses on extracting patterns that occur with frequen-
cies greater than some threshold, also known as support. The
temporal patterns are commonly described using Allen re-
lations and an Apriori-like algorithm [Agrawal and Srikant,
1994] is employed to extract the core structure of the activity
by building larger patterns from smaller ones [Winarko and
Roddick, 2007; Cohen et al., 2002; Fleischman et al., 2006;
Papapetrou et al., 2009].

Two groups have extended pattern mining to classification
by explicitly using the most informative patterns to build clas-
sifiers [Patel et al., 2008; Batal et al., 2009].

All of the bottom up methods we describe here do not scale
well because they generate and evaluate all patterns. This
is prohibitive for even modest datasets. For instance, in the
ww3d dataset, the common temporal pattern for the jump over
activity consists of twenty different fluents. Previous algo-

rithms cannot handle the enormous number of combinations
of fluents (e.g.,

(
20
5

)
patterns consisting of only five of 20 flu-

ents) required to find larger patterns.
The problem of online handwriting recognition is an ac-

tive research problem, and has been so since the beginning
of the sixties [Plamondon, 2000]. Special-purpose handwrit-
ing recognition methods have achieved very high accuracy
(e.g., [Biem, 2006; Jaeger et al., 2001] both achieve ac-
curacy around or above 90%). Other researchers have ap-
plied somewhat more general algorithms to the problem; for
example, [Bahlmann and Burkhardt, 2004] reported a gen-
eral, scalable, HMM-based method called cluster generative
statistical dynamic time warping (CSDTW) that holistically
combines cluster analysis and statistical sequence modeling.
Our approach is more general, still. It requires no external
knowledge of the domain, or structural knowledge such as
the number of hidden states in an HMM.

6 Discussion

In this paper, we introduced a new novel approach to activity
recognition that uses FSM as the underlying representation.
Recognizers are built by first extracting the signature of the
activity, which consists of the essential components shared
between all training instances of an activity. Once learned,
the signature determines which fluents to attend to in order to
generate a general FSM recognizer for the activity. The con-
struction of the signature and the FSM employed little domain
knowledge, allowing it to work well across several different
activity types. In particular, we presented the recognition per-
formance for three different activity types: ww3d, ww2d, and
handwriting.

Overall, the recognizers perform with F1 scores at or above
0.7 across all three datasets. Though the scores are good,
we believe that that performance can be improved in two
ways. One way to increase scores is to show that the learned
FSMs match what human subjects would say about the test in-
stance. For example, many subjects would probably say that
approach occurs during all of the jump over test instances.
Another option is to selectively choose a single activity per
test instance rather than allowing all recognizers to accept the
same test instance.

One possible heuristic for recognizing a single activity per
test instance would be to select the FSM recognizer that cov-
ers the largest amount of time. A way to achieve this is to
track the states of each FSM as it “plays” through an instance,
and measure the depth of the state furthest away from the
start state for each time step. We refer to this as the informa-
tion depth of the recognizer and it should tell us something
about the amount of information that the recognizer can “ex-
plain” about the instance. Figure 8 shows the information
depth measurement for four different FSMs on an example of
jump over from the ww3d dataset. The maximum depth ratio,
measured as the ratio between the depth of the furthest active
state and the total length of its path to the nearest accepting
state, was recorded at each time step of the playback. A ratio
of 1 implies that the FSM has reached an accepting state.

In this example, the correct label for the test instance is
jump-over, and it is correctly recognized by the FSM for jump

1352



Figure 8: Results of a sample information depth experiment
for the ww3d dataset.

over. In addition, the approach recognizer also reached an ac-
cepting state for the test, not once, but twice. The difference
between the two explanations is that the approach recognizer
only accounted for about 75 time steps, meaning that the wub-
ble was not approaching the block for 125 time steps. On the
other hand, the jump over recognizer accommodated most, if
not all, of the activity. Selecting the FSM recognizer that cov-
ered more of test instance would mean selecting jump over,
which is the correct activity.

7 Acknowledgements

This work was supported by Defense Advanced Research
Projects Agency (DARPA) under contract W911NF1020064.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do
not necessarily reflect the views of DARPA.

References

[Agrawal and Srikant, 1994] Rakesh Agrawal and Ramakr-
ishnan Srikant. Fast Algorithms for Mining Association
Rules. In Proceedings of the 20th VLDB Conference,
1994.

[Agrawal et al., 1995] Rakesh Agrawal, Giuseppe Psaila,
Edward L Wimmers, and Mohamed Zaı̈t. Querying Shapes
of Histories. Proceedings of the 21th International Con-
ference on Very Large Data Bases, pages 502–514, 1995.

[Allen, 1983] James F. Allen. Maintaining Knowledge
About Temporal Intervals. Communications of the ACM,
26(11):832–843, 1983.

[Bahlmann and Burkhardt, 2004] Claus Bahlmann and Hans
Burkhardt. The Writer Independent Online Handwriting
Recognition System frog on hand and Cluster Generative
Statistical Dynamic Time Warping. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(3):299–
310, 2004.

[Batal et al., 2009] Iyad Batal, Lucia Sacchi, Riccardo Bel-
lazzi, and Milos Hauskrecht. Multivariate Time Series

Classification with Temporal Abstractions. Florida Arti-
ficial Intelligence Research Society Conference, 2009.

[Biem, 2006] Alain Biem. Minimum Classification Error
Training for Online Handwriting Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 28(7):1041–1051, 2006.

[Cohen et al., 2002] Paul R Cohen, Charles Sutton, and
Brendan Burns. Learning Effects of Robot Actions us-
ing Temporal Associations. International Conference on
Development and Learning, 2002.

[Fleischman et al., 2006] Michael Fleischman, Phillip De-
camp, and Deb K Roy. Mining Temporal Patterns of
Movement for Video Content Classification. Proceedings
of the 8th ACM SIGMM International Workshop on Multi-
media Information Retrieval, 2006.

[Jaeger et al., 2001] S. Jaeger, S. Manke, J. Reichert, and
A. Waibel. Online handwriting recognition: the npen++
recognizer. International Journal on Document Analysis
and Recognition, 3:169–180, 2001.

[Kerr et al., 2008] Wesley Kerr, Paul Cohen, and Yu-Han
Chang. Learning and Playing in Wubble World. In Pro-
ceedings of the Fourth Artificial Intelligence and Inter-
active Digital Entertainment Conference, pages 66–71,
2008.

[Kerr, 2010] Wesley N. Kerr. Learning to Recognize Agent
Activities and Intentions. PhD thesis, University of Ari-
zona, 2010.

[Lin et al., 2007] Jessica Lin, Eamonn Keogh, Li Wei, and
Stefano Lonardi. Experiencing SAX: a Novel Symbolic
Representation of Time Series. Data Mining and Knowl-
edge Discovery, 15:107–144, 2007.

[Needleman and Wunsch, 1970] Saul B. Needleman and
Christian D. Wunsch. A General Method Applicable to
the Search for Similarities in the Amino Acid Sequence of
Two Proteins. Journal of molecular biology, 48(3):443–
453, March 1970.

[Papapetrou et al., 2009] Panagiotis Papapetrou, George
Kollios, Stan Sclaroff, and Dimitrios Gunopulos. Mining
Frequent Arrangements of Temporal Intervals. Knowledge
and Information Systems, 21(2):133–171, 2009.

[Patel et al., 2008] Dhaval Patel, Wynne Hsu, and Mong Li
Lee. Mining Relationships Amont Interval-based Events
for Classification. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data
(SIGMOD’08), pages 393–404, 2008.

[Plamondon, 2000] Rejean Plamondon. On-Line and Off-
Line Handwriting Recognition: A Comprehensive Survey.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 22(1):63–84, 2000.

[Winarko and Roddick, 2007] Edi Winarko and John F Rod-
dick. ARMADA – An Algorithm for Discovering Richer
Relative Temporal Association Rules from Interval-Based
Data. Data & Knowledge Engineering, 63:76–90, 2007.

1353




