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Abstract

This paper considers the multi-task learning
problem and in the setting where some rele-
vant features could be shared across few re-
lated tasks. Most of the existing methods
assume the extent to which the given tasks
are related or share a common feature space
to be known apriori. In real-world applica-
tions however, it is desirable to automati-
cally discover the groups of related tasks that
share a feature space. In this paper we aim
at searching the exponentially large space of
all possible groups of tasks that may share
a feature space. The main contribution is
a convex formulation that employs a graph-
based regularizer and simultaneously discov-
ers few groups of related tasks, having close-
by task parameters, as well as the feature
space shared within each group. The regular-
izer encodes an important structure among
the groups of tasks leading to an efficient al-
gorithm for solving it: if there is no feature
space under which a group of tasks has close-
by task parameters, then there does not ex-
ist such a feature space for any of its super-
sets. An efficient active set algorithm that
exploits this simplification and performs a
clever search in the exponentially large space
is presented. The algorithm is guaranteed to
solve the proposed formulation (within some
precision) in a time polynomial in the number
of groups of related tasks discovered. Empir-
ical results on benchmark datasets show that
the proposed formulation achieves good gen-
eralization and outperforms state-of-the-art
multi-task learning algorithms in some cases.
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1. Introduction

The paradigm of Multi-task learning (MTL) in-
volves learning several prediction tasks simultane-
ously (Caruana, 1997). In contrast to single task learn-
ing, here the idea is to synergize the related tasks by
appropriate sharing of information within them. Fol-
lowing Evgeniou & Pontil (2004); Jacob et al. (2008);
Jalali et al. (2010), tasks are said to be related if the
corresponding task parameters are close to each other.

The focus of this paper is in the multi-task learning
setting where some relevant features could be shared
across few related tasks. Such situations arise in sev-
eral real world applications (Tropp, 2006; Jalali et al.,
2010). Existing works in this setting (Turlach et al.,
2005; Zhang & Huang, 2008; Negahban & Wainwright,
2009; Jalali et al., 2010) employ a `1/`∞-norm based
regularizer that promotes sparsity among features and
low variance among the parameters of all the given
tasks in the shared feature space. Success of such
methods depends on the extent to which the given
tasks are related and the extent to which the fea-
tures are shared among the tasks. In fact, Negahban
& Wainwright (2009) show that `1/`∞ regularization
could actually perform worse than simple element-wise
`1 regularization when the extent to which the features
are shared is less than a threshold or when the task
parameters are not all close-by. Alternatively, Chen
et al. (2010) assume that the relations between the
tasks are known and propose employing a regularizer
that penalizes deviations in weight vectors for highly
correlated tasks. However, in real-world applications
such task relations are not known apriori and need to
be discovered.

The main contribution of this work is a convex for-
mulation that simultaneously discovers groups of re-
lated tasks having close-by task parameters, as well as
the feature space shared within each group. Here, the
search space for the groups of related tasks is taken to
be the power-set of the given tasks. Following the set-
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up of Multiple Kernel Learning (MKL) (Bach et al.,
2004), the feature space in each group is taken to be
that induced by a conic combination of a given set of
base kernels. In the special case where the base kernels
are chosen to be linear kernels formed by individual in-
put features, this amounts to feature selection.

Note that Widmer et al. (2010) also attempt a search
among all possible groups of tasks; however the run-
time of their algorithm is exponential in the number
of tasks. Moreover, the shared feature space in each
group is assumed to be the input space. The pro-
posed formulation employs a graph-based regularizer
that encodes an important structure among the groups
of tasks: if there is no feature space under which a
group of tasks has close-by task parameters, then there
does not exist such a feature space for any of its su-
persets. Note that this specialty when appropriately
exploited by an algorithm may avoid search in poten-
tially large portions of the search space which are any-
way not fruitful. In Section 3, an active set algorithm
is presented that exploits this specialty and optimally
solves the proposed formulation in a time polynomial
in the number of groups of related tasks discovered.
Note that this number is typically very small compared
to the size of the power-set of the given tasks. Simula-
tions on benchmark datasets show that the proposed
methodology achieves good generalization and outper-
forms state-of-the-art multi-task learning techniques in
some cases.

The rest of the paper is organized as follows. Section 2
formalizes the notation and the problem set-up. The
details of the proposed formulation and the algorithm
for solving it are described in Sections 3 and 4 respec-
tively. Experimental results are discussed in Section 5.
We conclude by summarizing the work and the key
contributions.

2. Notations and set-up

Consider a set T of learning tasks, T in number. The
training data for the tth task is denoted by: Dt =
{(xti, yti), i = 1, . . . ,m} ∀t = 1, . . . , T , where (xti, yti)
represents the ith input/output pair of the tth task.
For the sake of notational simplicity, we assume that
the number of training examples is the same for all the
tasks. The task predictors are assumed to be affine:
Ft(x) = 〈ft, φ(x)〉 − bt, t = 1, . . . , T , where ft is the
weight vector of the tth task, φ(·) is the feature map
and bt is the bias term. Recall that our aim is to
discover groups of related tasks from the power-set of
T (henceforth denoted by V). To this end, we further
assume that ft =

∑
w∈Gt ftw where Gt is the set of all

subsets of T containing task t and ftw is the weight

vector indicating the influence of group/subset w on
task t. As we shall detail in the subsequent section,
we employ a sparse regularizer that forces many ftw
to be zero and hence enables selection of promising
groups of related tasks.

In addition to discovering groups of related tasks,
the proposed formulation also learns the correspond-
ing shared feature spaces induced by conic combi-
nations of base kernels. To this end, let k1, . . . , kn

be the given base kernels. Let φj(·) denote the fea-
ture map induced by the jth kernel kj , j = 1, . . . , n.
Hence, φ(x) = (φ1(x), . . . , φn(x)). Let f jtw represent
the projection of ftw onto the φj space. In other
words, ftw = (f1

tw, . . . , f
n
tw). With this notation, the

prediction function for the task t can be rewritten
as Ft(x) = 〈ft, φ(x)〉 − bt =

∑
w∈Gt〈ftw, φ(x)〉 − bt

=
∑
w∈Gt

∑n
j=1〈f

j
tw, φ

j(x)〉 − bt. Note that if f jtw =
0 ∀t ∈ w, then the feature space corresponding to the
jth kernel is absent in the shared feature space of the
group w. Hence learning the the task predictors or
equivalently the weight vectors f jtw and the bias terms
bt amounts to simultaneous discovery of latent task
structure as well as the corresponding shared feature
spaces. In the subsequent section a novel convex for-
mulation for learning the optimal task predictors in
the current set-up is presented.

3. A Novel Convex Formulation

This section presents the key contribution of the pa-
per — a convex feature learning formulation for latent
task structure discovery. Following the well-establish
methodology of regularized risk minimization (Vapnik,
1998), we consider the following problem:

min
ft,bt ∀t

Ω(f1, . . . , fT )2 + C

T∑
t=1

m∑
i=1

`(Ft(xti), yti) (1)

where Ω(f1, . . . , fT )2 is the regularizer, `(·, ·) is a suit-
able convex loss function (like the hinge loss) and C
is the regularization parameter. In multi-task learn-
ing, it is common to choose a regularizer based on
some prior knowledge about the relationship among
the given tasks. For example, when all the tasks are in-
dependent, Ω(f1, . . . , fT )2 can be taken as

∑T
t=1 ‖ft‖22,

leading to a factorization of the problem into problems
involving individual tasks. In cases where it is known
that all the given tasks have close-by weight vectors
(i.e., all tasks are related), the following regularizer
may be employed (Evgeniou & Pontil, 2004):

Ω(f1, . . . , fT )2 = µ‖h0‖22 +

T∑
t=1

‖ht‖22, (2)
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where ft = h0 +ht ∀ t = 1, . . . , T and µ is the parame-
ter that controls the trade-off between regularizing the
mean weight vector h0 and the variance in the weight
vectors of the tasks.

In the following text, we present a novel regular-
izer suitable for the current problem. We begin by
writing down a basic term in the proposed regu-
larizer, Θj

w, which induces close-by feature weights
in the group w wrt. the feature space j: Θj

w =(
µ‖hj0w‖22 +

∑
t∈Tw

‖hjtw‖22
) 1

2

where f jtw = hj0w + hjtw.

This term is motivated from (2). Note that, Θj
w =

0 ⇒ f jtw = 0 ∀ t ∈ w i.e., the shared feature space
of the group w does not involve the jth kernel/feature
space.

Now, the terms Θj
w, j = 1, . . . , n are combined

using a p-norm expression, leading to: ‖Θw‖p =(∑
j

(
Θj
w

)p) 1
p

where Θw is the vector with entries as

Θj
w, j = 1, . . . , n, and p ∈ (1, 2). Such a p-norm pro-

motes sparsity in the selection of the kernel induced
feature spaces (i.e., forces many Θj

w = 0). With the
interpretation of Θj

w noted above, essentially this en-
ables feature learning within the wth group of tasks.
Also, ‖Θw‖p = 0 ⇒ Θj

w = 0 ∀ j = 1, . . . , n ⇒ f jtw =
0 ∀ t ∈ w, j = 1, . . . , n i.e., in case the node w does
not contain related tasks (under any feature space in-
duced by combinations of the given base kernels), then
it does not influence any of the task predictors Ft.

With this interpretation, one naive way of obtain-
ing few promising groups of related tasks (that share
a feature space) is by employing a `q, q ∈ (1, 2)
norm over the terms ‖Θw‖p, w ∈ V: Ω(f1, . . . , fT ) =(∑

w∈V (‖Θw‖p)q
) 1

q . However the problem with this
regularizer is that it renders the formulation (1) infea-
sible for real-world applications as the resultant opti-
mization problem cannot be, in general, solved in a
time polynomial in the number of tasks.

One key idea in the paper is to employ a graph-based
regularizer, that alleviates this problem by exploiting
a special structure among the groups of tasks. Note
that the groups of tasks can be represented as nodes of
a directed acyclic graph with the partial order ⊆, rep-
resenting the “subset of” relation. It can verified that
〈V,⊆〉 is a lattice. The topmost node of the lattice
represents a dummy node – the group with no tasks in
it, the second level nodes represents groups with sin-
gle task and so on. The bottommost node represents
the group consisting of all the T tasks. As discussed
earlier, we would like to encode into our regularizer
the following structure among the groups of tasks: if
there is no feature space under which a group of tasks

has similar task parameters, then there does not exist
such a feature space for any of its supersets. In the
context of the present lattice, this is same as saying:
if a node w is not selected, then the entire sub-lattice
D(w), which consists of all the descendants of w (in-
cluding w itself), need not be selected. In the follow-
ing, a regularizer that reflects this special structure is
presented.

Motivated by the graph-based regularizers employed
in Zhao et al. (2009); Bach (2008), we propose the
following novel regularizer for the problem at hand:

Ω(f1, . . . , fT ) =
∑
v∈V

dv

 ∑
w∈D(v)

‖Θw‖qp

 1
q

(3)

where q ∈ (1, 2), p ∈ (1, 2) and dv is a parameter that
enables encoding prior knowledge regarding the task-
relatedness in the group/node v. For e.g. one may
have the prior knowledge that there is no task which is
not related to the others. In this case one may choose
dv = 0 for all the nodes in the second level of the lat-
tice. Note that the proposed regularizer (3) may also
be viewed as a `1, `q, `p mixed-norm regularizer. The
`1-norm over the nodes (v ∈ V) of the lattice promotes

sparsity, and hence we have
(∑

w∈D(v) ‖Θw‖qp
) 1

q

= 0

for most v ∈ V i.e., few groups of related tasks are

selected. Moreover,
(∑

w∈D(v) ‖Θw‖qp
) 1

q

= 0⇒ f jtw =

0 ∀ t ∈ w, ∀ j ∈ 1, . . . , n, ∀ w ∈ D(v). In other
words if a group/node is not selected (by the 1-norm),
then none of its descendants are selected by the for-
mulation — which is exactly the special structure we
wanted to encode. The q-norm brings in additional
sparsity among the descendants of the groups that are
selected by the 1-norm. As we detail later, the key
advantage with this regularizer is that it renders the
proposed formulation (1), solvable in reasonable time.

In the following, a specialized partial dual of (1) with
the proposed regularizer (3) is presented. This gives
further insights into the working of the proposed for-
mulation and motivates an efficient active set algo-
rithm for solving it. In order to keep notations sim-
ple, the dual is presented for the case where each
of the given tasks is a binary classification problem
and the loss function `(Ft(x), y) is the hinge loss:
max (0, 1− yFt(x)). However, it is easy to extend the
derivations to other learning settings and convex loss
functions as well.

Theorem 1. In the case where the given tasks are all
of binary classification and the hinge loss is employed
as the loss function, the dual of (1) with the regularizer
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defined in (3) is given by1

min
γ∈∆|V|

H(γ) (4)

where ∆|V| =
{
z ∈ R|V| | z ≥ 0, 1>z = 1

}
denotes the

simplex of dimension |V| and H is a convex function
with H(γ) equal to the optimal value of the following
optimization problem:

max
βt∈Rm ∀t

∑
t 1>βt− 1

2

(∑
w∈V λw(γ)(

∑k
j=1(β>Kj

wβ)p̄)
q̄
p̄

) 1
q̄
,

s.t. 0 ≤ βt ≤ C1 ∀ t, y>t βt = 0 ∀ t, (5)

where yt denotes the vector with entries as
yti, β = [β1 . . . βT ]>, 1 and 0 denote vec-
tors with all entries as 1 and 0 respectively,

λw(γ) =
(∑

v∈A(w) d
q
vγ

1−q
v

) 1
1−q

, A(w) repre-

sents the set of ancestors for node w (including
w), p̄ = p

2(p−1) , q̄ = q
2(q−1) . The easiest way

to describe the matrix Kj
w ∈ RmT×mT is by

writing it as a block matrix of size T × T with
the (t1, t2)th block as the matrix Kj

w(t1, t2) ∈
Rm×m. The (i1, i2)th entry of Kj

w(t1, t2) is =
µ+1
µ yt1i1yt2i2k

j(xt1i1 ,xt2i2) if t1 = t2 ∈ w,
1
µyt1i1yt2i2k

j(xt1i1 ,xt2i2) if t1, t2 ∈ w, t1 6= t2,

0 otherwise.

The dual (4) provides interesting insights into the for-
mulation. To this end, let us begin with an interpre-
tation for the Kj

w matrices. From their definition, it
is easy to see that Kj

w can also be viewed as the gram
matrix of training examples from all the tasks with an
appropriately defined kernel function kjw. As µ → 0,
1
µ dominates and the kernel function kjw reflects great

similarity between examples of tasks in w (and vice-
versa). Also, the examples from tasks not belonging
to w have low similarity with those in w. Hence, the
kernel kjw captures the similarity between the tasks in
the group w under the jth feature space.

Now lets focus on the problem (5). In the special
case p̄ = q̄, this problem is same as the `q̂-MKL
formulation (Kloft et al., 2009) with q̂ = q̄

q̄−1 and

with base kernels as k̂jw = (λw(γ))
1
q̄ kjw ∀w ∈ V and

∀j = 1, . . . , n. Hence the problem (5) realizes a sparse
combination of these kernels. With the interpretation
provided above, this essentially amounts to a sparse
selection of groups of related tasks. Hence the prob-
lem of latent task structure discovery essentially is
posed as an MKL problem (with appropriately de-
fined kernels kjw). However, unlike `q̂-MKL that per-
forms a “flat” kernel selection, here the kernels are

1Proof appears in the supplementary material

weighted by a monotonic function of λw(γ) giving rise
to a structured selection among the kernels. To see
this, let us shift our focus to the dual problem (4).
Because of the simplex constraints (i.e., `1 regular-
ization), most of the γv will either be near zero at
optimality. From the definition of λw(γ), we obtain:
γv = 0 ⇒ λw(γ) = 0 ∀ w ∈ D(v). Also, λw(γ) = 0
implies the entire set of kernels k1

w, . . . , k
n
w are not se-

lected i.e., the group of tasks in w are not related in
any feature space under consideration. To summa-
rize, few groups of related tasks that share a feature
space are selected and if a group of tasks is unrelated
(γv = 0), then all its supersets are unrelated (because,
λw(γ) = 0 ∀ w ∈ D(v)). Figure 1 provides an illus-
tration of the dual problem for the case of three tasks
(T = 3) and three base kernels (n = 3). The proposed
formulation is equivalent to performing a structured
selection among n× |V| kernels arranged on a lattice.
At each node, there are n kernels that represent the
relatedness of tasks in that group. The subsequent sec-
tion, presents an efficient active-set algorithm for solv-
ing the proposed formulation that exploits the special
structure in the solution described above.
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T
1

T
1
T
2

T
3T

2

T
1
T
2
T
3

T
2
T
3

T
1
T
3

k
w
1

k
w
3

k
w
2

k
v
1

k
v
3

k
v
2

k
u
1

k
u
3

k
u
2

Figure 1. Figure illustrating the arrangement of kernels
(kjw) selected by the dual (4). 3 tasks, T = {T1, T2, T3},
and 3 base kernels are considered. The kernels kjw are
shown for 3 nodes {T1}, {T1, T2}, {T1, T2, T3} in the lat-
tice. Note that these matrices have a block structure with
zeros for the entries corresponding to the tasks absent in
the group.

4. Active-set Algorithm

Following a common practice for solving large-scale
convex sparsity problems (Lee et al., 2007; Bach,
2008), we propose solving the dual (4) using an ac-
tive set algorithm.
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The basic idea of the active set algorithm is as follows:
the formulation is solved iteratively using improved
guesses for the active set, which is defined as the set
of w for which γw 6= 0 at optimality. At each iteration
the problem restricted to the variables in the active set
is solved using an appropriate solver. In order to save
computational cost, the size of the initial active set is
usually taken to be minimal. After solving the problem
with the variables restricted to the current active set,
a sufficiency condition for optimality of the solution is
verified. In case the solution is optimal, the algorithm
terminates. In case it is not, the active set is updated
and the restricted problem with the new active set is
solved. This process is repeated until optimality is
reached. Any prior knowledge related to the structure
of the optimal solution may also be incorporated in
building the active set at each iteration. In case of
problems like (4) with sparse solutions, the hope is that
one may not solve the problem with all the variables,
γw, which are exponential in T in number.

In order to formalize the active-set algorithm, we need
i) an initial guess for the active set and a procedure for
building/improving the active set after each iteration,
ii) a sufficiency condition for verifying optimality of the
current solution. Ideally, the complexity of verification
of the condition should depend on the active set size
rather than the problem size iii) an efficient algorithm
for solving the formulation restricted to active set.

We begin with the first. Let W represent the active
set. The initial guess as well as the methodology for
the identification of the promising nodes is motivated
by the special structure in the solution of (4): if a
node w is not selected in the optimal solution, i.e.,
γw = 0, none of the descendants of w are selected
(since λv(γ) = 0 ∀v ∈ D(w)). Equivalently, it can be
stated that a node w can be selected only if all its
ancestors are selected i.e., only if γv 6= 0 ∀v ∈ A(w).
Due to this observation,W is always maintained to be
equal to its hull, where hull(W) is defined to be the
set of all the ancestors of the nodes in W. Accord-
ingly, the initial guess for W is taken to be the second
level nodes i.e., the singleton task groups. Also, in the
subsequent iterations, only those nodes which have all
their parents in W are considered as potential candi-
dates for entry inside W.

Towards the second requirement, we present the fol-
lowing theorem2:

Theorem 2. For a given active set W such that
W = hull(W), let the optimal solution of (4) re-

stricted to W be (γ̂, β̂). Let Θ̂ be the value of the

2Proof is fairly technical and appears in the supplemen-
tary

term

(∑
w∈V λ̂w(γ̂)

(∑k
j=1

(
β̂>Kj

wβ̂
)p̄) q̄

p̄

) 1
q̄

. Then,

(γ̂, β̂) is an optimal solution of (4) with duality gap ε
if:

max
s∈sources(Wc)

 ∑
w∈D(s)

β̂>
(∑

jK
j
w

)
β̂(∑

v∈A(w)∩D(s) dv

)2

 ≤ Θ̂+2ε

(6)
where sources(W) is the set of nodes in W with no
parent in W and Wc denotes the set of all the nodes
present in the lattice V but not in W.

As mentioned earlier, the above sufficiency condi-
tion is useful only if it can be verified in polynomial
time in |W|. Firstly, size of sources(W c) is upper-
bounded by T |W|. The denominator in the summa-
tion,

∑
v∈A(w)∩D(s) dv can be computed in O(T ) pro-

vided dv is decomposable as a product. In the simula-
tions we use, dv = 1.5|v|. Because of the block struc-
ture of the matrices Kj

w, the sum over descendants in
(6) can be computed in O(T 2m2).

In the following, we present an efficient algorithm
of solving (4) restricted to W. Note that (4) has
a simple constraint set, which is a simplex and the
gradient ∇H(γ) can be computed using the Dan-
skin’s theorem (Bertsekas, 1999): the ith compo-
nent of this sub-gradient is given by (∇H(γ))i =

−d
q
i γ
−q
i

2q̄ ×
(∑

w∈V λw(γ)
(∑k

j=1

(
β̄>Kj

wβ̄
)p̄) q̄

p̄

) 1
q̄−1

×(∑
w∈D(i) λw(γ)q

(∑k
j=1

(
β̄>Kj

wβ̄
)p̄) q̄

p̄

)
, where β̄ is

an optimal solution of (5) with the given γ. Hence
one can employ projected gradient-descent algorithm
or any of its variants for solving (4. Here we employ
the mirror-descent algorithm (Ben-Tal & Nemirovski,
2001) for solving (4)3. Note that the gradient com-
putation ∇H(γ) requires solving (5) with the given γ.
Also, since the constraint set in (5) is similar to that
in an SVM, the β̄ will be sparse at optimality. Hence
we use a sequential minimal optimization (SMO) algo-
rithm (Platt, 1999) for solving (5). Algorithm 1 sum-
marizes the proposed active-set method. The com-
putational complexity of the active set algorithm is
as follows: let the final size of the active set be W .
Hence, (4) is solved a maximum of W times. Each
run of mirror-descent algorithm takes O(log(W )) it-
erations (Ben-Tal & Nemirovski, 2001) while in each
iteration the dominant computation is that of SMO
for solving (5). A conservative complexity estimate for

3Proofs regarding the applicability of mirror-descent on
our problem are detailed in the supplementary material.
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Algorithm 1 Active Set Algorithm

Input: Training data Dt ∀t, tolerance ε.
Output: γ, β,W.
Initialize W = {w| w ∈ V, |Tw| = 1} (i.e. first level
nodes of the lattice V)
repeat

For the current W, solve for γ, β in (4) using mirror-
descent & SMO.
Calculate V = nodes violating the condition (6)
Update W =W ∪ V

until V is empty

the SMO algorithm is O((Tm)3(Wn)2). The comput-
ing cost for kernel matrices is O(n(Tm)2), while that
of verifying the sufficiency condition is O((Tm)2TW ).
Thus the overall complexity is: O(n2W 2m3T 3).

We end this section by presenting a variant of the
proposed methodology. The motivation for this vari-
ant comes from a closer-look at the complexity of the
active-set algorithm. Since the active-set always sat-
isfies the condition W = hull(W) and since the com-
plexity depends on the active-set size W ; in practice
one cannot realize situations where the group selected
is way down the lattice. In other words, it is rare that a
group with large number of tasks is selected. However,
as shown in simulations, there might exist applications
where weight vectors are extremely close-by for all or
most of the tasks. Hence realizing a group containing
most of the tasks may be beneficial. One simple modi-
fication of the proposed methodology for selecting such
large groups is: invert the lattice of groups of tasks i.e.,
revert the parent-child relations, and employ exactly
the same formulation (the descendants become the an-
cestors and vice-versa). It is easy to see that in this
case groups involving large number of tasks may be
selected; whereas selecting groups involving few tasks
is now improbable. Though this modification is simple
and interesting, the natural motivation for employing
the graph-based regularizer is absent in this case. The
graph-based regularizer needs to be motivated purely
from a computational perspective in this case.

5. Experimental Results

In this section we present our empirical studies on the
following benchmark multi-task classification and re-
gression datasets:
Sarcos A multiple-output regression dataset used
in Zhang & Yeung (2009). The aim is to predict in-
verse dynamics corresponding to the seven degrees-of-
freedom of a robot arm. The number of tasks is 7
and there are 21 real valued input features. Follow-
ing Zhang & Yeung (2009), we sampled 2000 random
examples from each task.

Parkinson A multi-task regression dataset4. The aim
is to predict Parkinson’s disease symptom score for pa-
tients at different times using 19 bio-medical features.
The dataset has 5,875 observations for 42 patients.
The symptom score prediction problem for each pa-
tient is considered as a regression task. Thus there are
42 regression tasks with number of instances for each
task ranging from 101 to 168.
Yale A face recognition dataset from Yale face base5.
It contains 165 images of 15 subjects. Following the
experimental setup in Zhang & Schneider (2010), each
task is defined as the binary classification problem of
classifying two subjects. Thus there are 28 tasks and
the number of features is 30.
Landmine A benchmark multi-task classification
dataset used in Xue et al. (2007); Zhang & Schneider
(2010). It contains examples collected from various
landmine fields. Each example is represented as a 9-
dimensional real valued feature vector. Each task is
a binary classification problem with the goal being to
predict landmines (positive class) or clutter (negative
class). Following Xue et al. (2007); Zhang & Schneider
(2010), we jointly learn 19 tasks from the landmine
fields numbered 1 − 10 and 16 − 24 in the data set.
Number of instances in each task varies from 445 to
690. The dataset is highly biased against the positive
class.
MHC-I A multi-task classification dataset used in Ja-
cob et al. (2008). It contains binding affinities of var-
ious peptides with different MHC-I molecules. Each
task here is a binary classification problem. We per-
form experiments on the same 10 tasks reported in Ja-
cob et al. (2008). Total number of instances in the 10
tasks is 1200 and the input space consists of 180 bi-
nary features. The number of instances per task varies
from 59 to 197 and the the dataset is biased against
the positive class.
Letter A multi-task classification dataset used in Ji
& Ye (2009). It consists of handwritten letters from
different writers. Each task is a binary classifica-
tion problem of distinguishing between pairs of letters.
There are 9 such binary classification tasks and we ran-
domly sampled 300 data points per task for our simu-
lations. The input features used are the 8× 16 = 128
binary pixels.

Each dataset was further randomly split into train-
ing and test sets. In Landmine, MHC-I and Letter
datasets, random 20%-80% train-test splits were con-

4Available at http://archive.ics.uci.edu/ml/
datasets/Parkinsons+Telemonitoring

5Dataset and train-test splits available at http://www.
zjucadcg.cn/dengcai/Data/FaceData.html. We used the
first 10 splits containing 5 training examples per subject.

http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
http://www.zjucadcg.cn/dengcai/Data/FaceData.html
http://www.zjucadcg.cn/dengcai/Data/FaceData.html
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Table 1. Performance of various methods on regression and classification datasets

Dataset STL MTL CMTL DMTL MTFL

Regression Datasets – Explained Variance (%)

SARCOS 40.47± 7.56(< 1m) 34.50± 10.19(< 1m) 33.02± 13.42(< 1m) 40.59± 10.24(< 1m) 49.86± 6.34∗(2m)

PARKINSON 2.84± 7.51(< 1m) 4.94± 19.95(< 1m) 2.74± 3.62(< 1m) −12.25± 7.41(< 1m) 16.79± 10.81∗(23m)

Classification Datasets – AUC (%)

YALE 93.36± 2.33(< 1m) 96.35± 1.64(< 1m) 95.20± 2.12(< 1m) 92.44± 2.81(9m) 96.98± 1.55∗(18m)

LANDMINE 74.60± 1.55(< 1m) 76.42± 0.78(1m) 75.86± 0.66(< 1m) 65.86± 2.63(< 1m) 76.44± 0.92(14m)

MHC-I 69.25± 2.07(< 1m) 72.28± 1.94(< 1m) 72.56± 1.36∗(< 1m) 58.39± 5.46(4m) 71.68± 2.20(15m)

LETTER 61.24± 0.82(< 1m) 61.02± 1.56(< 1m) 60.52± 1.09(< 1m) 59.34± 1.39(< 1m) 60.45± 1.75(12m)

sidered. In the case of Sarcos dataset 15 random sam-
ples per task were used for training and the rest for
testing. For Parkinson dataset, 5 random examples
per task were used in training and the rest for testing.

We compare the following multi-task learning tech-
niques in terms of generalization ability:
MTL Classical multi-task learning algorithm by Ev-
geniou & Pontil (2004). Assumes that all tasks are
related and have close-by weight vectors. No feature
learning is performed.
CMTL The clustered multi-task learning formulation
proposed in Jacob et al. (2008). Finds clusters of tasks
having similar weight vectors. No feature learning is
performed.6

DMTL The multi-task feature learning formulation
in Jalali et al. (2010). Performs feature selection to
discover features shared across all the tasks as well as
task-specific features. Also, induces close-by weight
vectors for the tasks in the shared feature space.7

MTFL The proposed multi-task feature learning for-
mulation. The base kernels were taken as linear kernels
with individual input features. In addition, the linear
kernel using all input features was also employed as a
base kernel. Thus if the input space dimensionality is
n, then we generate n + 1 linear kernels. We did not
employ non-linear kernels for the sake of being fair and
comparable to DMTL. The parameters p, q were both
fixed at 1.5, promoting sparsity in selecting groups of
related tasks as well as in selecting the kernel induced
feature spaces. Since the base kernels include individ-
ual input-feature based linear kernels, this amounts to
feature selection.8

STL A baseline approach in which the tasks are

6Code available at http://cbio.ensmp.fr/~ljacob/
documents/cmtl-code.tgz

7Code available at http://www.ali-jalali.com/
index_files/L1Linf_LASSO.r

8Code available at www.cse.iitb.ac.in/~pratik.j/
MTFL_icml12.tar.gz

learned independently using SVM.
Note that all of the above multi-task learning tech-
niques rely on the same notion of task-relatedness:
weight vectors of related tasks are close. Hence a com-
parison among them is indeed meaningful.

The free parameters in all the methods were tuned
using nested 3-fold cross validation procedure. The
details of the parameter ranges are as follows: in case
of MTFL, MTL and STL, the regularization param-
eter C was chosen from the set {10−3, 10−2, . . . , 103}.
MTFL and MTL have an additional parameter µ,
which was chosen from the set: {10−3, 10−2, . . . , 10}.
CMTL has 4 parameters and we considered 3 val-
ues for each leading to 34 = 81 combinations (Zhang
& Schneider, 2010). DMTL has 2 parameters and we
considered 7 values of each leading to 49 combinations.

Results of the simulations are summarized in Table 1.
In case of regression datasets we report the explained
variance, whereas for classification datasets we report
AUC (Area Under Curve). In both cases, higher the
value reported, the better the algorithm. Also, we
report both the mean and standard deviation in the
values over 10 random train-test splits. The numbers
in the brackets indicate the run-times in minutes with
the tuned parameters on a Xeon machine with 16GB
RAM. The best result in each dataset is highlighted.
In case the best result is with the proposed method
(MTFL) and its improvement over state-of-the-art is
statistically significant, then we additionally mark it
with a ‘*’. In case the best result is with an exist-
ing method and its improvement over the proposed
method (MTFL) is statistically significant, then we
again mark it with a ‘*’. Statistical significance test is
performed using the paired t-test at 90% confidence.

The proposed method outperformed state-of-the-art in
both the regression datasets and achieved significant
improvement in case of the Yale dataset. Note that in
case of Sarcos dataset, the baseline STL performs bet-

http://cbio.ensmp.fr/~ljacob/documents/cmtl-code.tgz
http://cbio.ensmp.fr/~ljacob/documents/cmtl-code.tgz
http://www.ali-jalali.com/index_files/L1Linf_LASSO.r
http://www.ali-jalali.com/index_files/L1Linf_LASSO.r
www.cse.iitb.ac.in/~pratik.j/MTFL_icml12.tar.gz
www.cse.iitb.ac.in/~pratik.j/MTFL_icml12.tar.gz
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ter than MTL showing that there may be some tasks
that are not related to some others and the task struc-
ture is non-trivial. Hence discovering the latent task
structure is indeed important in this case. The ex-
cellent performance of the proposed method indicates
that the task structure is well discovered by it.

According to the results, the proposed methodology
does not seem to improve over state-of-the-art in case
of the MHC-I and Letter datasets. A closer look at
the datasets and the predictors achieved with state-of-
the-art showed that the weight vectors are extremely
close-by in these datasets. This motivated us to try the
inverted lattice trick described towards the end of sec-
tion 4. With this modified methodology we achieved
an improved average AUC of 72.77% and 61.12% re-
spectively on MHC-I and Letter datasets.

We end this section with a discussion on the run-time
of the proposed method. Note that none of the exist-
ing methods attempt an optimal search over the ex-
ponentially large space of groups of tasks. Hence, as
expected, the run-time of the proposed method is on
the higher-side. Though this is the case, it is inter-
esting to note that the extremely large search space
(242) in case of the Parkinson dataset is searched in a
reasonable time of 23min. Moreover, in most datasets
the proposed method achieves better generalization.

6. Conclusions

In real-world applications it is important to discover
groups of related tasks that share a feature space. The
main contribution of the work is a convex formulation
for solving this problem. Using a novel graph based
regularizer, the search in the exponentially large space
of groups of tasks is rendered feasible. Experimental
results illustrate the efficacy of the proposed approach.
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