
Action Selection via Learning Behavior Patterns in Multi-Robot Systems

Can Erdogan and Manuela Veloso
Carnegie Mellon University
Pittsburgh, PA 15213-3890

cerdogan@cmu.edu veloso@cs.cmu.edu

Abstract

The RoboCup Small Size League robot soccer
competitions have successfully taken place for thir-
teen years with autonomous systems where a com-
bination of centralized perception and control, and
distributed actuation takes place. In a given game,
teams of five robots move at high speeds in a lim-
ited space, actuating a golf ball, aiming to score
goals. Although the teams perform in a compelling
way in principle, running pre-planned strategies,
adapting in real-time to the adversarial teams is still
a big challenge. In this paper, we introduce a repre-
sentation that models the spatial and temporal data
of a multi-robot system as instances of geometrical
trajectory curves. We then explain how to model
the behavior of a multi-robot system by implement-
ing a variant of agglomerative hierarchical cluster-
ing. Next, we provide an algorithm that classifies a
behavior concurrently as it occurs, with respect to a
given clustering. Subsequently, we define an algo-
rithm that autonomously generates counter tactics.
We evaluate our work on logs from real games and
in simulation.

1 Introduction
An interesting multi-robot system is the RoboCup Small Size
league. In this domain, two teams of 5 robots engage in a
soccer game, moving fast at 2m/s in a confined space of 6m
by 4m. Each team is controlled by a central computer that
receives visual data from two overhead cameras 60 frames per
second. The visual data comprises of location and orientation
information of each robot and the location of the ball.

Through our experience in the domain, we make the fol-
lowing conjecture: Each team has a finite set of strategies
and, in a game, they choose to commit to a particular one de-
pending on the position of the ball and other features of the
game. For instance, such a strategy may include a robot pre-
serving the possession of the ball while two others position
themselves to receive a pass.

One of the features in OurTeam system is the extensive log-
ging technique that is used to record the events in a game. In
particular, the locations of the robots and the ball is stored at
every frame, resulting in an extensive amount of data. Given

the game logs, one wonders if this data could be used to learn
the underlying strategies that shape the behavior of a team.

To challenge this problem, we extract a set of trajectories
from the game logs where a trajectory is defined as a se-
quence of timestamped points in multidimensional space. We
select only the sections of the log where the ball possessionis
awarded to the opponent team and a passing motion is about
to be executed. The problem is thus reduced to finding com-
mon patterns in a set of trajectory observations.

We first formalize the notion of similarity between sets
of trajectories and then contribute a clustering techniqueto
identify common patterns. The key idea we build upon is
that trajectories can be represented as images and thus, shape
matching algorithms can be utilized to compute distances. In
our experiments, we observe that this framework can indeed
identify the behavior patterns that underlie the strategies of 3
teams that OurTeam played against in RoboCup 2010.

The next question is whether we can predict how a behavior
will shape in the future by matching it to a similar observa-
tion that has already been made. To this end, we contribute a
heuristic that iteratively adjusts the durations of previous ob-
servations so that comparisons with the ongoing behavior are
also feasible in time space. Our experiments show that we
can identify behavior patterns with %70 success by watching
less than %30 of any observation.

The final section of our work focuses on whether OurTeam
can autonomously generate counter tactics and execute them
successfully before the behavior pattern that it recognizes
reaches an end. We completed experiments simulating the
behavior of 3 opponent teams of OurTeam in RoboCup 2010.
Our results suggest that if an opponent team does not change
its commitment after detecting the counter tactic, the preemp-
tive action succeeds %70 to %80 of the time.

To the best of our knowledge, our system is the first one
to model the behavior of a multi-robot system and attempt to
take actions to change its behavior. We note that although we
base our work in the robot soccer domain, the algorithms we
provide are general and applicable to other multi-robot do-
mains. We organize the rest of the paper as follows. First we
continue with the related work in the trajectory analysis do-
main. In Section II, we formalize the notion of similarity be-
tween behavior patterns of multi-robot teams and provide an
algorithm to cluster similar patterns. Next, in Section III, we
present a heuristic algorithm to classify behavior patterns on-

line and introduce a framework that autonomously generates
counter tactics. Finally, in Section IV, we review the main
contributions of our study and discuss future work.

We discuss related work in the subject of trajectory analy-
sis that is closely related to two research areas: (i) similarity
metrics between trajectories, and (ii) clustering techniques.
Concerning similarity metrics, different domain-dependent
approaches have been studied. Li et al.[2010] base their dis-
tance metric on a set of functions defined over the individual
line segments to efficiently create compact clusters of trajec-
tories, whereas, Hwang et al.[2005], make use of points of
interests on their trajectories, such as sharp turns as theywork
on clustering trajectories on road networks. Other common
approaches are based on the Longest Common Subsequence
model [Vlachoset al., 2002] and Dynamic Time Warping
[Cormanet al., 1990]. These approaches, in addition to the
spatial matching, also focus on the temporal matching of data
points in the trajectories. The drawback of these algorithms is
mostly their sensitivity to input parameters and potentialto be
computationally expensive. Shape matching approaches also
exist, using geometric distances. In this paper, we implement
the Hausdorff distance metric[Rote, 1991]. Similarly, Shao
et al. [2010] propose a modification of the Hausdorff distance
to match trajectories with different updating policies.

Regarding clustering techniques, most popular approaches
are density-based[Li et al., 2010], hierarchical[Kumaret al.,
2002], grid-based[Sacharidiset al., 2008] and based on neu-
ral networks[Hu et al., 2003]. Density-based and grid-based
approaches are generally used for larger datasets, whereas,
neural networks need to be trained. In this work, we adopted
an agglomerative hierarchical technique where we provide an
algorithm to create partitions from the hierarchical tree rep-
resentation. Our algorithm is a modification of the approach
pursued by Kumar et al.[2002], starting with each cluster as
an element and building up to partitions by a series of merges.

A third categorization is the underlying purpose of the tra-
jectory analysis. For instance, the studies of Li et al.[2010]
and Shao et al. [2010] are motivated to model the mo-
tion of the objects they analyze whereas Hu et al.[2003] and
Sacharidis[2008] attempt to predict future events such as traf-
fic accidents by clustering online data. In our work, in addi-
tion to online prediction, we focus on action selection to take
preemptive measures to manipulate future events.

In the next section, we provide a definition of behavior pat-
tern that characterizes the behavior of a multi-robot system.

2 Definition of a Behavior Pattern
In the Small Size robot soccer domain, the visual data regard-
ing the states of the robots and the ball in the field is obtained
from two overhead cameras that transmit information 60 fps.
Let δt be the frame period, 1/60 = 0.016s. Additional data
with respect to the state of the game, such as referee calls,
timeouts and etc. are obtained from another computer named
referee box. For a time frame t, the input data to the system
can be summarized as: (i) location, orientation and team of
each robot r<xr,t, yr,t, θr,t, teamr>, (ii) location of the ball
<xb,t,yb,t>, and (iii) the referee call rt. rt can be one of the
following characters:{’F’, ’I’, ’P’, ’K’, ’S’, ’s’ } which stand

for free kick, indirect kick, penalty, kickoff, start and stop
commands. In OurTeam, in addition to processing the input
data in real-time and transmitting commands to the robots, we
also store the data in a log file for further inspection. Next,
we discuss how we preprocess this data to extract useful sets
of trajectories.

Given a time frame [t0,tn], we define atrajectory T to
be a vector of points recorded within that time frame, such
thatT (t0, tn) = {(xi,t0 , yi,t0) . . . (xi,tn , yi,tn)}. We repre-
sent the behavior of a robot within a time frame with the tra-
jectory it follows throughout that duration. Next, we define
anepisodeE = [t0,tn] as a time frame during which we ana-
lyze the behavior of an attacker team to deduce its offensive
strategies. An episode starts when the ball possession is given
to a team due to a free kick or an indirect kick, and then, the
team has to make a pass due to game rules. Figure 1 depicts
the behavior of a team within an episode.

Figure 1: The behavior of a team throughout an episode
where blue and black robots position for a pass and the ball
(in red) is passed to the black one.

An episodebeginsat time t0 if the free or indirect kick
command is given by the referee, following a duration of stop
commands: for some constantc1, rt = ’s’ ∀t ∈ {(t0 − c1 ∗
δt) . . . (t0 − δt)} and rt0 ∈ {’F’, ’I’ }. In the time frame
[(t0 − c1 ∗ δt), (t0 − δt)], all robots must stay in 50cm away
from the ball. With the referee signalrt0 , an attacker robot
RA enters the 50cm radius zone to actuate the ball. Let BR
be the radius of the ball and MR be the maximum radius of a
robot. An episode is placed in the database unless:
1. the ball is not actuated by the kicker of a robot:

angle((xb,t, yb,t) − (xA,t, yA,t)) 6= θA,t at time t such
thatdist((xb,t, yb,t), (xA,t, yA,t)) ≤ (BR+MR); or,

2. the game is stopped before the ball moves:rl = ’s’ for a
l ≤ argmin

t>t0

(dist((xb,t0 , yb,t0), (xb,t, yb,t)) > BR); or,

3. robots stay stationary:∀t ∈ {t0 . . . t0 + c2 ∗ F}
max(dist((xi,t0 , yi,t0), (xi,t, yi,t))) > MR.

We set the time related constantsc1 andc2 to 10 ∗ δt ≤ 0.2s.
Let tm be the time the ball was actuated by the actuator

robot RA as computed in the second validity condition above.
An episodeendsat timetn if and only if:
1. the ball collides with a robot after being actuated:

dist((xi,t, yi,t), (xb,t, yb,t)) ≤ BR+MR for a t> tm; or,
2. the ball is out of bounds: for some t> tm, |xb,t| > 3m or
|yb,t| > 2m.

Note that episodes can be extracted both from game logs and
in real-time, for offline and online learning respectively.

The definition of an episode allows us to identify the sec-
tions of a game where we hypothesize that teams execute an
instance of a behavior chosen from a predefined finite set.
We define the behavior of a team in an episode Ek as a set of
trajectories Sk = {{(xi,tk

0

, yi,tk
0

) . . . (xi,tk
n
, yi,tk

n
)}| robot Ri is

an active agent in Ek}. Without losing generalization, we as-
sume that the observed team is attacking to the right side of
the field. Then, robot Ri is anactive agentin Ek if:
1. it manipulates the ball:∃ somet such thattk0 < t < tkn,

dist((xi,t, yi,t), (xb,t, yb,t)) < (BR+MR); or,
2. it is at the opponent half of the field at some point in Ek:
∃ some t such thattk0 < t < tkn, xi,t > 0.

Figure 2 depicts an example of three active robots scoring
a goal while two defensive robots do not take any action.
Note that following Figure 3, we depict behavior of teams
in episodes only with the active agents.

Figure 2: A set of trajectories from where two robots with
blue trajectories position themselves to receive a pass. The
red trajectory belongs to the ball. The robot that receives the
pass, shoots at the ball. The robots with black trajectoriesdo
not have any impact in the scene.

We define abehavior pattern as a cluster of similar sets of
trajectories Si. Figure 3 demonstrate the behavior of robots
in two episodes where the robots perform the same motion.

Figure 3: Two episodes of a team, during which the joint
behavior of the robots are the same. Note that they are mirror
images of each other horizontally.

3 Learning Behavior Patterns
In this section, we first formalize the notion of similarity be-
tween sets of trajectories; then present a clustering algorithm
to extract common behavior patterns and finally, demonstrate
experimental results.

3.1 Similarity between Sets of Trajectories
Assume that we want to quantify the similarity between two
sets of trajectories S1 and S2, during two episodes E1 = [t10,

t1n] and E2 = [t20, t2n] respectively. For any set of trajectories
denoted by S, let S[i] denote the ith trajectory in S and let
|S| be the number of trajectories in S. Note that we also refer
to sets of trajectories in a given time frame [t0, tn] with the
S(t0, tn) notation. First, we discuss the Hausdorff distance
that computes the similarity of two trajectories.

Given two trajectories T1 and T2, H(T1, T2), the Haus-
dorff distance between them is defined as:

H(T1, T2) = max{max
p∈T1

min
q∈T2

E(p, q),max
p∈T2

min
q∈T1

E(p, q)}

where E(p,q) is the Euclidean distance between points p and
q. Note that the more similar two trajectories are, the smaller
the Hausdorff distance is. The computation time is O(mn)
where m and n are the number of points in T1 and T2 respec-
tively. Next, we formulate the similarity function between
two sets of trajectories.

Given the sets of trajectories S1 and S2, each with n tra-
jectories, one needs to first find the correspondence between
the trajectories of the two sets that minimizes the Hausdorff
similarity. Let Perm(n) be the set of all of the permuta-
tions of integers from 1 to n. A permutation P can be in-
terpreted as a matching rule where the ith trajectory in one
set corresponds to P(i)th trajectory in another. Then, the
best matching M can be formulated as follows:MS1,S2

=

argmaxP∈Perms(n)

n
∑

i=0

H(S1[i], S2[P (i)]). So, a possible

similarity function is:

Sim(S1, S2) =
n
∑

i=0

H(S1[i], S2[MS1,S2
[i]]).

A given set of trajectories can be generated in 3 additional
coordinates as mirror images of the robot locations about the
horizontal and vertical axes of the field. To address this issue,
we update the similarity function:

Sim(S1, S2) = min
F∈Flips

n
∑

i=0

H(F (S1[i]), S2[MS1,S2
[i]]),

where Flips is a set of functions where each function returns
a symmetric match of the input input set of trajectories.

The last setback of this similarity function is the frequent
calls made to the distance function directly proportional to
the number of points in the trajectories of the two sets. As a
solution, we reduce the length of the trajectories so that we
consider every nth data point with the function denoted asR:

Sim(S1, S2) = min
F∈Flips

n
∑

i=0

H(F (R(S1[i])), R(S2[MS1,S2
[i]])).

In summary, given two sets of trajectories, this formulation
achieves the following properties: (i) finds the trajectories of
the active agents, (ii) creates a matching between the trajec-
tories of the sets, (iii) handles different inversion cases, and
(iv) allows different sampling rates of the robot trajectories.

3.2 Clustering Sets of Trajectories
Given a similarity function between the sets of trajectories,
we partition them into clusters such that each cluster repre-
sents a behavior pattern. In Figure 4, we present the sets of
trajectories we extracted from the episodes of a team in a tree
obtained by hierarchical clustering. The lines in the labeled

Figure 4: A sample clustering of sets of robot trajectories into behavior patterns. The red boxes represent the clustersobtained
by hierarchical clustering. The trajectory sets in the samecluster are instances of the same behavior pattern.

boxes depict the trajectories of the robots and the ball (in red).
The boxes around the leafs of the tree represent the clusters
obtained and thus, the behavior patterns extracted from the
sets of trajectories. For instance, trajectory sets 17, 22 and
24, clearly belong to the left-most cluster.

We implement a variant of hierarchical clustering due to
two challenges imposed by our datasets. First, due to the
small size of our data with 20 to 100 elements, outliers can
significantly affect the results of partitional algorithms. Sec-
ond, the variance in the densities of clusters we obtain from
hierarchical algorithms show that such data can not be suc-
cessfully clustered by density-based algorithms.

Our implementation takes two inputs, minSize and max-
Size, that identify the minimum and maximum number of el-
ements a cluster can have. Below we present the algorithm:
1. Place each element in the dataset into a cluster
2. Compute the distance between every cluster by taking the

average of distances between each element.
3. Merge the closest pair of clusters if the number of ele-

ments of the new cluster is less than maxSize
4. Repeat steps 2-3 until number of clusters do not change
5. Remove any clusters that have less than minSize

We make two additions to the classic agglomerative hier-
archical clustering technique. First, we bound the number of
clusters by limiting the size of a cluster. Second, we postpro-
cess the clustering to detect outliers, those with size smaller
than minSize, and remove them.

3.3 Experimental Results
We provide experimental results that demonstrate that our
framework can indeed find the behavior patterns of a team
by observing its game play. We evaluate our work on real
game logs, testing whether we can deduce patterns from both
our opponents’ and our own game play.

To quantify the quality of the clusterings obtained, we com-
pare the results with the clusterings generated by ten human
classifiers. The comparison of clusterings is based on the

Rand index, an objective criteria frequently used in cluster-
ing evaluation. For two clusterings Ci and Cj of n elements,
with clusters{ci1, .. cin} and{cj1, .. cjm} respectively, we
define two values psame and pdiff . psame is the number of
elements in the same cluster and pdiff is the number of ele-
ments in different clusters in both Ci and Cj . The Rand index
R(Ci, Cj) is then computed as(psame + pdiff)

/(

n
2

)

. Note
that if Rand index 1.0, then two clusterings are the same.

Table 1 below summarizes the clusterings obtained in our
experiments by providing the average Rand Index computed
between the output of our system and each of the ten human
clusterings. Note that for TeamA, TeamB and TeamC, we set
the minSize and maxSize values in the clustering algorithm
to 5 and 15 respectively whereas for OurTeam, we increased
the maxSize to 25 for the greater number of episodes.

Table 1: Clustering Success in RoboCup Games
Team Episodes Clusters Ave. Rand Index

OurTeam 100 11 0.96
TeamA 30 8 0.87
TeamB 23 4 0.91
TeamC 14 2 0.94

4 Reacting to Behavior Patterns
We discuss online classification, the Non-Responsiveness as-
sumption and action selection algorithm.

4.1 Online Classification
Let C be a clustering of sets of trajectories such that C ={c1,
..., cn} and let each cluster ci be annotated as multiple sets
of trajectories: ci = {Ti,1, ..., Ti,m} where m is the size of
ci. Let tn be the current time. Assume that the beginning of
an episode was detected at time t0 < tn and the associated
set of trajectories is being recorded. The episode will reach
an end at time tk > tn. The objective is to place S(t0, tn)
in clustering C, as if the entire set was observed in the time

frame [t0, tk]. Thus, S should either be classified into some
cluster ci or placed in a new cluster cn+1.

To obtain the distance between a set of trajectories S and
some cluster ci in C, we compute the similarity function
Sim(S, Si,j) for each Sj in ci and then, computing the mean
of these values. However, the concept of time should be in-
cluded in the similarity computation of a partial set and a
completed one. Let tS = tn - t0 be the current duration of
the episode associated with S. We make the following claim:
if two sets of trajectories are to be clustered together, their
durations should be similar. Indeed, Table 2 demonstrates the
average durations and the standard deviation of behavior pat-
terns of TeamA game play, supporting our claim.

Table 2: Durations of Behavior Patterns of TeamA
Cluster 1 2 3 4 5 6 7 8
Time 5.5 7.1 4.2 4.7 3.5 4.3 4.5 5.0
Stdev .42 .26 .12 .08 .16 .26 .11 .58

We use the following heuristic: If a partial set S spanning
tS and a complete set Sc spanning tSc

are to be compared,
and tS < tSc

, the number of points of each trajectory in Sc

should be shortened by the ratio rS,SSc
= tS / tSc

. Thus, we
reformulate the similarity function in Section 3.1 as: Sim(S,
Sc) = Sim(S, red(Sc, rS,Sc

) where red is the reduction func-
tion that removes the last (1-rS,Sc

)th portion of the trajecto-
ries in Sc. Figure 5 demonstrates how the comparison of a
partial set of trajectories S with two complete sets A and B
would proceed in time. As tS increases, greater ratio values
are computed for each set A and B. Note that the observed
robot in set A reaches its final position and waits in the time
frame tS = [1.93, 4.15], whereas B changes considerably with
the inclusion of a second robot.

Figure 5: Incremental partial comparison of pattern P against
behavior patterns A and B. At the end, tp = 4.15s, the correct
complete set B is identified.

Let tcS be the duration that the complete set S spans over
and let tnS be the necessary amount of time trajectory set S
must be observed to classify it correctly. Let oP = tnS/t

c
S be

the observed ratio of S that is necessary to classify S. Figure 6
presents the effect of different observation percentages on the
correct classification of sets of trajectories for several teams.
For instance, more than 70% of the trajectory sets of all teams
are classified into correct behavior patterns by observing 30%
of each trajectory set.

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Percentage of Pattern Observed

P
er

ce
nt

ag
e

of
 C

or
re

ct
 B

eh
av

io
r

P
at

te
rn

s

CMDragons
Skuba
MRL
Kiks

Figure 6: Graph depicting the effect of observation duration
of partial patterns of a team on their correct classification.

4.2 Non-Responsiveness Assumption
After classifying behaviors concurrently, we want to take pre-
emptive actions. To do so, we first introduce the concept of
Non-Responsivenessas the inability of a system to adapt its
behavior to external input once it has committed to the ex-
ecution of that behavior. Figure 7 demonstrates two sets of
trajectories that were observed within the same game, min-
utes apart. Each line represents the trajectory of a robot and
a red circle depicts the beginning of a trajectory. We are in-
terested in the behavior or robot R1 on the left. One would
assume that it makes a circular motion because it tries to go
to an open space, getting away from the red, defender robot
R3. However, this explanation does not hold true on the right,
where R1 repeats the same motion although there are not any
robots marking it. It could just go towards the goal directly.
From these two cases, we claim that the blue team did not
take the defense into account on the left scene, in the first
place. We generalize the claim to other teams in RoboCup.

Figure 7: Two cases that help support the claim that the blue
team is not responsive to the actions of the red defense.

4.3 Action Selection
Let C be a clustering as defined in Section 4.1. Assume for
each cluster ci = {pi1, ..., pim} ∈ C, an optimal action Aci
exists such that if a trajectory set Ti,j ∈ ci is being observed
and Aci can be executed, then a successful counter measure is
taken. We define an optimal action as preventing the first pass
between the actuator robot that initiates the game play and the
opponent robot which receives the obligatory first pass

A policy is a mapping from the world states to valid actions
in a domain. LetΠ be the policy that governs the actions of
an observer system. Let Wtn be the state of the world at time
tn for which action Atn is chosen by policyΠ. We propose
that Atn should be replaced by the optimal action of some
cluster ci, Aci , if and only if, a partial trajectory set S is ob-
served at time tn and classified into ci. Simply put, if the
observer system can predict the future states by matching a
partial pattern with those in its database, then, it should over-
write its policy and attempt to take a specialized action for
that case. We present theSelectActionalgorithm to summa-
rize this discussion. Note that we refer to functions such as
getObservedPatternandonlineClassifierwhose implementa-
tions were discussed in Section 2 with definitions of episodes
and in Section 4.1 on online classification. Additionally,Ap-
plicable is a function that checks whether the preconditions
of the action would hold until it is completed, i.e. if a robot
has enough time to reach a position to intercept a pass.

Algorithm SelectAction
Input: Π: Policy;S: Current state;C: Clustering of behavior

patterns, each cluster has an associated optimal action;
Output: Action to be taken in that state
1. P←state.getObservedPattern();
2. if P != NULL
3. then cluster←onlineClassifier(C, P);
4. optAction←cluster.getOptimalAction();
5. if S.Applicable(optAction)
6. then return optAction;
7. return Π(S);

4.4 Experimental Results
We ran experiments on real game data in the following man-
ner. For each team, we first let our system process the pre-
vious games from the logfiles, learning the behavior patterns.
Second, we simulate a new game where we run our system as
usual, with the exception that visual data of opponents is from
the log files. Only the detected episodes are replayed based
on theNon-Responsivenessassumption. For each episode,
we observe whether the new soccer program with theSelec-
tAction algorithm intercepts the passes.

Note that in some episodes, the pass from the actuator
might not reach a receiver robot due to an interception by the
other team or to the inaccuracy of the actuator. Regardless,
we ignore those cases since from the log files, we can not ac-
tually simulate the movement of the ball and create a collision
by intercepting the ball. Table 3 summarizes the results.

Table 3: Intercepted Passes in Log Simulations
Team Patterns Interceptions Success Rate (%)

TeamA 26 21 80.7
TeamB 13 10 76.9
TeamC 15 11 73.3

The results show that we can identify the strategy of an
opponent team and successfully intercept the passes %70 to
%80 of the time. A detailed analysis of the failed interception
cases reveal that there are two sources of error: (i) inability of
the size of the database to capture every case and (ii) the late
classification of partial trajectory sets into the right clusters.

In the second case, even though the right optimal action is
chosen, the robots do not have enough time to execute it.

5 Conclusion
In this paper, we formalized a similarity measure between be-
havior patterns executed by robot soccer teams. Additionally,
we implemented a variant of the hierarchical clustering algo-
rithms that can efficiently model observed behavior patterns.
Moreover, we provided an algorithm that takes preemptive
actions to manipulate the outcome of the observed behavior.
We tested our work both on real game data and in simulation,
and demonstrated the success of our methods. Regarding fu-
ture work, we plan to weaken our assumption that teams com-
mit strongly to the patterns they execute.

References
[Cormanet al., 1990] Thomas H. Corman, Charles E. Leis-

erson, Ronald L. Rivest, and Clifford Stein.Introduction
to Algorithms. MIT Press and McGraw-Hill, 1990.

[Hu et al., 2003] Weiming Hu, Xuejuan Xiao, Dan Xie, and
Tieniue Tan. Traffic accident prediction using vehicle
tracking and trajectory. InIntelligent Transportation Sys-
tems, 2003. Proceedings.IEEE, 2003.

[Hwanget al., 2005] Jung-Rae Hwang, Hye-Young Kang,
and Ki-Joune Li. Spatio-temporal similarity analysis be-
tween trajectories on road networks. InER Workshops,
pages 280–289. Springer-Verlag, 2005.

[Kumaret al., 2002] Mahest Kumar, Nitin R. Patel, and
Jonathan Woo. Clustering seasonality patterns in the pres-
ence of errors. InKDD ’02 Proc. of the Eighth ACM
SIGKDD Intr. Conf. on Knowledge Discovery and Data
Mining, pages 557–563. ACM, 2002.

[Li et al., 2010] Zhenhui Li, Jae-Gil Lee, Xiaolei Li, and Ji-
awei Han. Incremental clustering for trajectories. InDAS-
FAA 2010, Part II, LNCS 5982, pages 32–46, 2010.

[Rote, 1991] Gunter Rote. Computing the minimum haus-
dorff distance between two point sets on a line under trans-
lation. In Information Processing Letters. Elsevier North-
Holland Inc, 1991.

[Sacharidiset al., 2008] Dimitris Sacharidis, Kostas Pa-
troumpas, Manolis Terrovitis, Verena Kantere, Michalis
Potamias, Kyriakos Mouratidis, and Timos Sellis. On-line
discovery of hot motion paths. InProc. of the 11th Intr.
Conf. on Extending Database Technology, 2008.

[Shaoet al., 2010] Fei Shao, Songmei Cai, and Junzhong
GU. A modified hausdorff distance based algorithm for
2-dimensional spatial trajectory matching. InComputer
Science and Education (ICCSE), 2010 5th Intr. Conf. on,
pages 166–172. IEEE, 2010.

[Vlachoset al., 2002] Michail Vlachos, George Kollios, and
Dimitrios Gunopulos. Discovering similar multidimen-
sional trajectories. InProc. of the 18th Intr. Conf. on Data
Engineering. IEEE, 2002.

