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Abstract

The RoboCup Small Size League robot soccer
competitions have successfully taken place for thir-
teen years with autonomous systems where a com-
bination of centralized perception and control, and
distributed actuation takes place. In a given game,
teams of five robots move at high speeds in a lim-
ited space, actuating a golf ball, aiming to score
goals. Although the teams perform in a compelling
way in principle, running pre-planned strategies,
adapting in real-time to the adversarial teams is still
a big challenge. In this paper, we introduce a repre-
sentation that models the spatial and temporal data
of a multi-robot system as instances of geometrical
trajectory curves. We then explain how to model
the behavior of a multi-robot system by implement-
ing a variant of agglomerative hierarchical cluster-
ing. Next, we provide an algorithm that classifies a
behavior concurrently as it occurs, with respectto a
given clustering. Subsequently, we define an algo-
rithm that autonomously generates counter tactics.
We evaluate our work on logs from real games and
in simulation.

Introduction

the game logs, one wonders if this data could be used to learn
the underlying strategies that shape the behavior of a team.

To challenge this problem, we extract a set of trajectories
from the game logs where a trajectory is defined as a se-
quence of timestamped points in multidimensional space. We
select only the sections of the log where the ball possession
awarded to the opponent team and a passing motion is about
to be executed. The problem is thus reduced to finding com-
mon patterns in a set of trajectory observations.

We first formalize the notion of similarity between sets
of trajectories and then contribute a clustering techniue
identify common patterns. The key idea we build upon is
that trajectories can be represented as images and thps, sha
matching algorithms can be utilized to compute distanaes. |
our experiments, we observe that this framework can indeed
identify the behavior patterns that underlie the strategfe3
teams that OurTeam played against in RoboCup 2010.

The next question is whether we can predict how a behavior
will shape in the future by matching it to a similar observa-
tion that has already been made. To this end, we contribute a
heuristic that iteratively adjusts the durations of pregiob-
servations so that comparisons with the ongoing behavéor ar
also feasible in time space. Our experiments show that we
can identify behavior patterns with %70 success by watching
less than %30 of any observation.

The final section of our work focuses on whether OurTeam

An interesting multi-robot system is the RoboCup Small Sizecan autonomously generate counter tactics and execute them
league. In this domain, two teams of 5 robots engage in &uccessfully before the behavior pattern that it recognize
soccer game, moving fast at 2m/s in a confined space of 6iieaches an end. We completed experiments simulating the
by 4m. Each team is controlled by a central computer thabehavior of 3 opponent teams of OurTeam in RoboCup 2010.
receives visual data from two overhead cameras 60 frames p@ur results suggest that if an opponent team does not change
second. The visual data comprises of location and ori@mtati its commitment after detecting the counter tactic, the ge
information of each robot and the location of the ball. tive action succeeds %70 to %80 of the time.

Through our experience in the domain, we make the fol- To the best of our knowledge, our system is the first one
lowing conjecture: Each team has a finite set of strategietb model the behavior of a multi-robot system and attempt to
and, in a game, they choose to commit to a particular one ddake actions to change its behavior. We note that although we
pending on the position of the ball and other features of thdase our work in the robot soccer domain, the algorithms we
game. For instance, such a strategy may include a robot pregrovide are general and applicable to other multi-robot do-
serving the possession of the ball while two others positiormains. We organize the rest of the paper as follows. First we
themselves to receive a pass. continue with the related work in the trajectory analysis do

One of the features in OurTeam system is the extensive lognain. In Section Il, we formalize the notion of similarity-be
ging technique that is used to record the events in a game. lmveen behavior patterns of multi-robot teams and provide an
particular, the locations of the robots and the ball is st@ie  algorithm to cluster similar patterns. Next, in Section We
every frame, resulting in an extensive amount of data. Givepresent a heuristic algorithm to classify behavior pagem



line and introduce a framework that autonomously generatefor free kick, indirect kick, penalty, kickoff, start andogt
counter tactics. Finally, in Section IV, we review the main commands. In OurTeam, in addition to processing the input
contributions of our study and discuss future work. data in real-time and transmitting commands to the robats, w

We discuss related work in the subject of trajectory analy-also store the data in a log file for further inspection. Next,
sis that is closely related to two research areas: (i) siityla we discuss how we preprocess this data to extract useful sets
metrics between trajectories, and (ii) clustering techag of trajectories.
Concerning similarity metrics, different domain-depenide  Given a time frame [tt,], we define atrajectory T to
approaches have been studied. Li e{2010 base their dis- be a vector of points recorded within that time frame, such
tance metric on a set of functions defined over the individuathat 7'(¢o, t,,) = {(zity, Yity) - - - (Tit,» Yit, )} We repre-
line segments to efficiently create compact clusters oétraj sent the behavior of a robot within a time frame with the tra-
tories, whereas, Hwang et 2004, make use of points of jectory it follows throughout that duration. Next, we define
interests on their trajectories, such as sharp turns asstbdy  anepisodeE = [ty,t,,] as a time frame during which we ana-
on clustering trajectories on road networks. Other commortyze the behavior of an attacker team to deduce its offensive
approaches are based on the Longest Common Subsequetategies. An episode starts when the ball possessioveis gi
model [Vlachoset al, 2004 and Dynamic Time Warping to a team due to a free kick or an indirect kick, and then, the
[Cormanet al, 1990. These approaches, in addition to the team has to make a pass due to game rules. Figure 1 depicts
spatial matching, also focus on the temporal matching @t datthe behavior of a team within an episode.
points in the trajectories. The drawback of these algorstiam
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mostly their sensitivity to input parameters and potertidle
computationally expensive. Shape matching approaches als
exist, using geometric distances. In this paper, we impigme
the Hausdorff distance metri®ote, 1991. Similarly, Shao
et al.[2010 propose a modification of the Hausdorff distance
to match trajectories with different updating policies. [

Regarding clustering techniques, most popular approaches
are density-basddli et al, 2014, hierarchica[Kumaret al,,
2004, grid-basedSacharidist al., 2009 and based on neu-
ral networkqHu et al, 2003. Density-based and grid-based
approaches are generally used for larger datasets, whereas
neural networks need to be trained. In this work, we adopte%_ ] . .
an agglomerative hierarchical technique where we provide a19uré 1: The behavior of a team throughout an episode
algorithm to create partitions from the hierarchical trep-r  here blue and black robots position for a pass and the ball
resentation. Our algorithm is a modification of the approactin red) is passed to the black one.
pursued by Kumar et a[2004, starting with each cluster as
an element and building up to partitions by a series of merges An episodebeginsat time ¢, if the free or indirect kick

A third categorization is the underlying purpose of the tra-command is given by the referee, following a duration of stop
jectory analysis. For instance, the studies of Li efaD1d  commands: for some constant r; ='s’ Vt € {(to — c1 *
and Shao et al. [201] are motivated to model the mo- 6t)...(to — dt)} andry,, € {'F,’I' }. In the time frame
tion of the objects they analyze whereas Hu d2a0g and  [(to — c1 * dt), (to — dt)], all robots must stay in 50cm away
Sacharidi$2009 attempt to predict future events such as traf-from the ball. With the referee signaj,, an attacker robot
fic accidents by clustering online data. In our work, in addi-Ra enters the 50cm radius zone to actuate the ball. Let BR
tion to online prediction, we focus on action selection teeta be the radius of the ball and MR be the maximum radius of a

preemptive measures to manipulate future events. robot. An episode is placed in the database unless:
In the next section, we provide a definition of behavior pat- 1. the ball is not actuated by the kicker of a robot:
tern that characterizes the behavior of a multi-robot syste angle(zy.t, ypt) — (xae,yar)) # 04, attime t such

thatdist((zv,e, yp,t), (€a,,y4,)) < (BR+MR); or,
2. the game is stopped before the ball moves: 's’ for a

I < argmin(dist((zp,ty, Yb.to)s (Tbt, Ybt)) > BR); or,
In the Small Size robot soccer domain, the visual data regard t>to .
ing the states of the robots and the ball in the field is obthine 3- "0POtS stay stationary:vt < {to...to + c2 x F}
from two overhead cameras that transmit information 60 fps, ~ MaX(dist((Zi,t, Yi.to)s (¥it,Yi))) > MR.
Let 5t be the frame period, 1/60 = 0.016s. Additional dataVVe set the time related constantsandc; to 10 « 6t < 0.2s.
with respect to the state of the game, such as referee calls, Let ¢,,, be the time the ball was actuated by the actuator
timeouts and etc. are obtained from another computer name@bot Ry as computed in the second validity condition above.
referee box. For a time frame t, the input data to the systerAn episodeendsat timet,, if and only if:
can be summarized as: (i) location, orientation and team ofl. the ball collides with a robot after being actuated:
each robot KX, +, Yr+, 0+, team.>, (ii) location of the ball dist((xi, Yit), (@0, ype)) < BR+MR forat> t,,; or,
<Xp,t,¥p,.>, and (iii) the referee call;r r, can be one of the 2. the ball is out of bounds: for some-tt,,, || > 3m or
following characters{'F’,'I', 'P’, ’K’, ’'S’,'s’  } which stand lyp,e| > 2m.

2 Definition of a Behavior Pattern



Note that episodes can be extracted both from game logs arnff] and & = [t3, t2] respectively. For any set of trajectories

in real-time, for offline and online learning respectively. denoted by S, let SJi] denote th& itrajectory in S and let
The definition of an episode allows us to identify the sec-|S| be the number of trajectories in S. Note that we also refer

tions of a game where we hypothesize that teams execute &an sets of trajectories in a given time frame, [t,] with the

instance of a behavior chosen from a predefined finite seS(ty, t,) notation. First, we discuss the Hausdorff distance

We define the behavior of a team in an episogeg a set of that computes the similarity of two trajectories.

trajectories § = {{(@s 0, Yi0n) - - - (@i, Yi e ) }| rObO R is Given two trajectories Tand T,, H(T1,T»), the Haus-

an active agent in &. Without losing generalization, we as- dorff distance between them is defined as:

sume that the observed team is attacking to the right side of H(Ty,T») = max{max min E(p, ¢), max min E(p, q)}

the field. Then, robot Ris anactive agentin Ey, if: p€T1 q€T2 pET2 q€Ty

1. it manipulates the balld somet such thatk < ¢ < t¥,  where E(p,q) is the Euclidean distance between points p and

dist((xi, yie)s (o0, Upe)) < (BRE*MR); or, g. Note that the more similar two trajectories are, the senall
2. itis at the opponent half of the field at some point jn E the Hausdorff distance is. The computation time is O(mn)
Jsome tsuch that; <t <tk x;; > 0. where m and n are the number of points inaind T, respec-

Figure 2 depicts an example of three active robots scoringvely. Next, we formulate the similarity function between

a goal while two defensive robots do not take any actiontwo sets of trajectories.

Note that following Figure 3, we depict behavior of teams Given the sets of trajectories &nd S, each with n tra-

in episodes only with the active agents. jectories, one needs to first find the correspondence between
the trajectories of the two sets that minimizes the Hau$dorf
similarity. Let Perm(n) be the set of all of the permuta-
tions of integers from 1 to n. A permutation P can be in-
terpreted as a matching rule where tHetrajectory in one

set corresponds to P{f) trajectory in another. Then, the
best matching M can be formulated as follow&s, 5, =

ArgMaXpe perms(n) 2. H(S1[i], S2[P(9)]). So, a possible
=0

similarity function is:

Figure 2: A set of trajectories from where two robots with } & ; :
blue trajectories position themselves to receive a pase Th §im(S1, 52) = ;)H(Sl (2], S2[Ms, s, [4]]).
red trajectory belongs to the ball. The robot that receities t
pass, shoots at the ball. The robots with black trajectalies
not have any impact in the scene.

A given set of trajectories can be generated in 3 additional
coordinates as mirror images of the robot locations abaut th
horizontal and vertical axes of the field. To address thisdss

We define dehavior pattern as a cluster of similar sets of we update the similarity flincnon.

trajectories § Figure 3 demonstrate the behavior of robots  g;,..(s. 5.} — : H(F(S: i, SolM ;
in two episodes where the robots perform the same motion. im(51, 52) Fén}}ﬁpSl;) (E (S, 5:2[Ms,s2 6]

where Flips is a set of functions where each function returns

L s a symmetric match of the input input set of trajectories.
T
[} \ () B{][jl : A{() l@ The last setback of this similarity function is the frequent
Z N - / calls made to the distance function directly proportiomal t
ol the number of points in the trajectories of the two sets. As a
k solution, we reduce the length of the trajectories so that we

) _ ) _ ~ consider every t data point with the function denoted &s
Figure 3: Two episodes of a team, during which the joint

behavior of the robots are the same. Note that they are mirro?77(51, 52) = pon ;) H(F(R(S1[i])), R(S2[Ms, s, [4]]))-

images of each other horizontally. In summary, given two sets of trajectories, this formulatio
achieves the following properties: (i) finds the trajecorof
) . the active agents, (ii) creates a matching between thectraje
3 Learning Behavior Patterns tories of the sets, (i) handles different inversion casesl
In this section, we first formalize the notion of similaritgo  (iv) allows different sampling rates of the robot trajeatst
tween sets of trajectories; then present a clustering iéhgor . . .
to extract comm(J)n behavior pat?erns and finally, dgrfm1i1(:}?.11;3trat?’-2 Clustering Sets of Trajectories

experimental results. Given a similarity function between the sets of trajectsrie
o . . we partition them into clusters such that each cluster repre
3.1 Similarity between Sets of Trajectories sents a behavior pattern. In Figure 4, we present the sets of

Assume that we want to quantify the similarity between twotrajectories we extracted from the episodes of a team irea tre
sets of trajectories;Sand S, during two episodes £= [t}, obtained by hierarchical clustering. The lines in the label
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Figure 4: A sample clustering of sets of robot trajectons behavior patterns. The red boxes represent the clustitased
by hierarchical clustering. The trajectory sets in the salaster are instances of the same behavior pattern.

boxes depict the trajectories of the robots and the balk@).r Rand index, an objective criteria frequently used in cluste
The boxes around the leafs of the tree represent the clusteirsy evaluation. For two clusterings @nd G of n elements,
obtained and thus, the behavior patterns extracted from theith clusters{c;i, .. ¢;,} and{c;1, .. ¢;,,,} respectively, we
sets of trajectories. For instance, trajectory sets 17,r2R a define two values . and iif¢. Psame IS the number of
24, clearly belong to the left-most cluster. elements in the same cluster ang is the number of ele-

We implement a variant of hierarchical clustering due toments in different clusters in bothy @nd G. The Rand index
two challenges imposed by our datasets. First, due to thR(C;, C;) is then computed ap,qme + pairs)/(3) . Note
small size of our data with 20 to 100 elements, outliers canhat if Rand index 1.0, then two clusterings are the same.
significantly affect the results of partitional algorithntec- Table 1 below summarizes the clusterings obtained in our
ond, the variance in the densities of clusters we obtain fronexperiments by providing the average Rand Index computed
hierarchical algorithms show that such data can not be sudetween the output of our system and each of the ten human
cessfully clustered by density-based algorithms. clusterings. Note that for TeamA, TeamB and TeamC, we set

Our implementation takes two inputs, minSize and max-the minSize and maxSize values in the clustering algorithm
Size, that identify the minimum and maximum number of el-to 5 and 15 respectively whereas for OurTeam, we increased
ements a cluster can have. Below we present the algorithm:the maxSize to 25 for the greater number of episodes.

1. Place each element in the dataset into a cluster Table 1: Clustering Success in RoboCup Games

2. Compute the distance between every cluster by taking the Team 0 Episodes| Clusters| Ave. Rand Index
average of distances between each element. OurTeam 100 11 : 0.96

3. Merge the closest pair of clusters if the number of ele- TeamA 30 5 0.87

ments of the new cluster is less than maxSize

4. Repeat steps 2-3 until number of clusters do not change
5. Remove any clusters that have less than minSize

We make two additions to the classic agglomerative hier-
archical clustering technique. First, we bound the number o
clusters by limiting the size of a cluster. Second, we pastpr 4 Reacting to Behavior Patterns
cess the clustering to detect outliers, those with sizelemal \y,e dgiscuss online classification, the Non-Responsiversss a
than minSize, and remove them. sumption and action selection algorithm.

TeamB 23 4 0.91
TeamC 14 2 0.94

3.3 Experimental Results 4.1 Online Classification

We provide experimental results that demonstrate that outet C be a clustering of sets of trajectories such that{&5
framework can indeed find the behavior patterns of a team., ¢,} and let each cluster; be annotated as multiple sets
by observing its game play. We evaluate our work on reabf trajectories: ¢= {T, 1, ..., T;.,} where m is the size of
game logs, testing whether we can deduce patterns from both. Let t, be the current time. Assume that the beginning of
our opponents’ and our own game play. an episode was detected at time<t t,, and the associated
To quantify the quality of the clusterings obtained, we com-set of trajectories is being recorded. The episode willlieac
pare the results with the clusterings generated by ten humamn end at time;t > t,. The objective is to place S(tt,)
classifiers. The comparison of clusterings is based on thim clustering C, as if the entire set was observed in the time



frame [, tx]. Thus, S should either be classified into some O Cripragons]
cluster ¢ or placed in a new cluster,g; . %E&f

To obtain the distance between a set of trajectories S and
some cluster cin C, we compute the similarity function
Sim(S, §,;) for each S in ¢; and then, computing the mean
of these values. However, the concept of time should be in-
cluded in the similarity computation of a partial set and a
completed one. Letst=1t, - ty be the current duration of
the episode associated with S. We make the following claim:
if two sets of trajectories are to be clustered togethet the
durations should be similar. Indeed, Table 2 demonstrhtes t O ermentage of Puttern Obsewed
average durations and the standard deviation of behavier pa

terns of TeamA game play, supporting our claim. Figure 6: Graph depicting the effect of observation duratio
Table 2: Durations of Behavior Patterns of TeamA of partial patterns of a team on their correct classification
Cluster| 1 | 2 | 3 [ 4|5 |6 ] 7|8 4.2 Non-Responsiveness Assumption

Time | 55]71|42|47]35]|43|45]5.0 o .
Sidev | 22 26 121 08 16 26 11 58 After_classﬁymg behaviors concqrrerjtly, we want to take-p
emptive actions. To do so, we first introduce the concept of
Non-Responsivenesas the inability of a system to adapt its
We use the following heuristic: If a partial set S spanningbehavior to external input once it has committed to the ex-
ts and a complete set.S$panning ¢, are to be compared, ecution of that behavior. Figure 7 demonstrates two sets of
and & < tg,, the number of points of each trajectory in S trajectories that were observed within the same game, min-
should be shortened by the ratiggs, =ts / tg,. Thus, we utes apart. Each line represents the trajectory of a rolbt an
reformulate the similarity function in Section 3.1 as: SBn( a red circle depicts the beginning of a trajectory. We are in-
S:) = Sim(S, red(g, rs,s,) where red is the reduction func- terested in the behavior or robot R1 on the left. One would
tion that removes the last (k-k.)!" portion of the trajecto- assume that it makes a circular motion because it tries to go
ries in S. Figure 5 demonstrates how the comparison of &0 an open space, getting away from the red, defender robot
partial set of trajectories S with two complete sets A and BR3. However, this explanation does not hold true on the right
would proceed in time. Asstincreases, greater ratio values where R1 repeats the same motion although there are not any
are computed for each set A and B. Note that the observexbbots marking it. It could just go towards the goal directly
robot in set A reaches its final position and waits in the timeFrom these two cases, we claim that the blue team did not
frame & = [1.93, 4.15], whereas B changes considerably withtake the defense into account on the left scene, in the first
the inclusion of a second robot. place. We generalize the claim to other teams in RoboCup.
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Figure 7: Two cases that help support the claim that the blue
team is not responsive to the actions of the red defense.

Let t¢ be the duration that the complete set S spans over . )
and let t be the necessary amount of time trajectory set $.3 Action Selection
must be observed to classify it correctly. Let e= t%/t% be  Let C be a clustering as defined in Section 4.1. Assume for
the observed ratio of S that is necessary to classify S. Eigur each cluster c= {p;1, ..., pm} € C, an optimal action A
presents the effect of different observation percentageéise®  exists such that if a trajectory set < c; is being observed
correct classification of sets of trajectories for sevezahts. and A., can be executed, then a successful counter measure is
For instance, more than 70% of the trajectory sets of all ;eamtaken. We define an optimal action as preventing the first pass
are classified into correct behavior patterns by obsernvidg 3 between the actuator robot that initiates the game playtend t
of each trajectory set. opponent robot which receives the obligatory first pass

Figure 5: Incremental partial comparison of pattern P agjain
behavior patterns A and B. At the engd 4 4.15s, the correct
complete set B is identified.




A policy is a mapping from the world states to valid actionsIn the second case, even though the right optimal action is
in a domain. LeflI be the policy that governs the actions of chosen, the robots do not have enough time to execute it.
an observer system. Let)\Vbe the state of the world at time
t, for which action A is chosen by policyI. We propose 5 Conclusion
that A;, should be replaced by the optimal action of some

cluster g, A.;, if and only if, a partial trajectory set S is ob- havior patterns executed by robot soccer teams. Additignal

served at time,f and classified into,c Simply put, if the o implemented a variant of the hierarchical clusterinal
observer system can predict the future states by matching‘% 'mp varl : ! usteringalg

partial pattern with those in its database, then, it shouét-o rithms that can efficiently model observed behavior pattern

write its policy and attempt to take a specialized action for*1CT€OVer, we provided an algorithm that takes preemptive
that case. We present tSelectActionalgorithm to summa- actions to manipulate the outcome of the observed behavior.

rize this discussion. Note that we refer to functions such a%\:]edtgzﬁgr?&:gggktﬁgtguigézglc%a&? r(g]aett?]ggg 'gg'rglrj(lj?rt:o?d_
getObservedPatterandonlineClassifiewhose implementa- - R€g 9

tions were discussed in Section 2 with definitions of episodeture work, we plan to weaken our assumption that teams com-

and in Section 4.1 on online classification. Additionafy- mit strongly to the patterns they execute.

plicableis a function that checks whether the preconditions

of the action would hold until it is completed, i.e. if a robot R€ferences

has enough time to reach a position to intercept a pass. [Cormanet al,, 1990 Thomas H. Corman, Charles E. Leis-
Algorithm SelectAction erson, Ronald L. Rivest, and Clifford Steimtroduction

Input: IT: Policy;S: Current stateC: Clustering of behavior to Algorithms MIT Press and McGraw-Hill, 1990.

patterns, each cluster has an associated optimal action[Hu et al, 2003 Weiming Hu, Xuejuan Xiao, Dan Xie, and
Output: Action to be taken in that state Tieniue Tan. Traffic accident prediction using vehicle
P «+stategetObserved Pattern(); tracking and trajectory. lintelligent Transportation Sys-
if P 1= NULL tems, 2003. Proceeding&EE, 2003.

2
3 then cluster«onlineClassifier(C, P); [Hwan
. ) . ) getal, 2005 Jung-Rae Hwang, Hye-Young Kang,
g' _(]3pstéftlczr)<—l§:llustetrget_OptzmalActwn(), and Ki-Joune Li. Spatio-temporal similarity analysis be-
. : " pprica 6(0& (_:tlo.n) tween trajectories on road networks. BR Workshops
then return optAction; pages 280—289. Springer-Verlag, 2005.

return TI(S); N
[Kumaret al, 2004 Mahest Kumar, Nitin R. Patel, and
4.4 Experimental Results Jonathan Woo. Clustering seasonality patterns in the pres-

We ran experiments on real game data in the following man- €nce of errors. IrKDD '02 Proc. of the Eighth ACM
ner. For each team, we first let our system process the pre- SIGKDD Intr. Conf. on Knowledge Discovery and Data
vious games from the logfiles, learning the behavior pastern ~ Mining, pages 557-563. ACM, 2002.

Second, we simulate a new game where we run our system §isi et al, 201J Zhenhui Li, Jae-Gil Lee, Xiaolei Li, and Ji-
usual, with the exception that visual data of opponent®isfr awei Han. Incremental clustering for trajectories DIAS-
the log files. Only the detected episodes are replayed based FAA 2010, Part I, LNCS 598pages 32-46, 2010.

on theNon-Responsivenesassumption. For eaqh episode, [Rote, 1991 Gunter Rote. Computing the minimum haus-
we observe whether the new soccer program withSalec- dorff distance between two point sets on a line under trans-

tAction algor!thm Intercepts the passes. lation. InInformation Processing Letter&lsevier North-
Note that in some episodes, the pass from the actuator Holland Inc. 1991

might not reach a receiver robot due to an interception by the o o o

other team or to the inaccuracy of the actuator. RegardlestSacharidiet al, 2004 Dimitris Sacharidis, Kostas Pa-
we ignore those cases since from the log files, we can not ac- troumpas, Manolis Terrovitis, Verena Kantere, Michalis
tually simulate the movement of the ball and create a cotiisi ~ Potamias, Kyriakos Mouratidis, and Timos Sellis. On-line

by intercepting the ball. Table 3 summarizes the results. discovery of hot motion paths. IRroc. of the 11th Intr.
Conf. on Extending Database Technolpg§08.

In this paper, we formalized a similarity measure between be

=

N

Table 3: Intercepted Passes in Log Simulations

Team | Patterns| Interceptions| Success Rate (% [Shacet al, 201Q Fei Shao, Songmei Cai, and Junzhong
TeamA 26 21 30,7 GU. A modified hausdorff distance based algorithm for
2-dimensional spatial trajectory matching. @omputer
TeamB| 13 10 76.9 P jectory 9 P
TeamC 15 11 733 Science and Education (ICCSE), 2010 5th Intr. Conf. on

pages 166-172. IEEE, 2010.

The results show that we can identify the strategy of arfVlachosetal, 2004 Michail Vlachos, George Kollios, and
opponent team and successfully intercept the passes %70 to Dimitrios Gunopulos. Discovering similar multidimen-
%80 of the time. A detailed analysis of the failed intercepti smngl trajectories. I®roc. of the 18th Intr. Conf. on Data
cases reveal that there are two sources of error: (i) irplili Engineering|EEE, 2002.
the size of the database to capture every case and (i) the lat
classification of partial trajectory sets into the rightsters.



