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ABSTRACT
This paper introduces a novel method for joint unsupervised aquisition of verb subcategorization
frame (SCF) and selectional preference (SP) information. Treating SCF and SP induction as a
multi-way co-occurrence problem, we use multi-way tensor factorization to cluster frequent
verbs from a large corpus according to their syntactic and semantic behaviour. The method
extends previous tensor factorization approaches by predicting whether a syntactic argument
is likely to occur with a verb lemma (SCF) as well as which lexical items are likely to occur
in the argument slot (SP), and integrates a variety of lexical and syntactic features, including
co-occurrence information on grammatical relations not explicitly represented in the SCFs. The
SCF lexicon that emerges from the clusters achieves an F-score of 68.7 against a gold standard,
while the SP model achieves an accuracy of 77.8 in a novel evaluation that considers all of a
verb’s arguments simultaneously.

TITLE AND ABSTRACT IN FRENCH

Factorisation de tenseurs à plusieurs dimensions
pour l’acquisition lexicale non supervisée

Cet article présente une méthode originale pour l’acquisition simultanée de cadres de sous-
catégorisation (subcategorization frames) et de restrictions de sélection (selectional preferences)
appliquée au lexique verbal. L’induction simultanée de ces deux types d’information est vue
comme un problème de cooccurrence à plusieurs dimensions. On introduit donc une méthode
de factorisation de tenseurs, afin de classer les verbes fréquents d’un grand corpus suivant leur
comportement syntaxique. L’approche est fondée sur un ensemble de traits de nature syntaxique
et lexicale, y compris des informations de cooccurrence au sein des relations grammaticales qui
ne sont pas explicitement représentées dans les schémas de sous-catégorisation. Le dictionnaire
de sous-catégorisation produit par la méthode de classification obtient une F-mesure de 68,7
lors de l’évaluation face à un dictionnaire de référence tandis que les restrictions de sélection
ont une exactitude (accuracy) de 77,8 en tenant compte de tous les arguments simultanément.

KEYWORDS: subcategorization frames, selectional preferences, lexical acquisition, tensor
factorization, unsupervised machine learning.

KEYWORDS IN FRENCH: cadre de sous-catégorisation, restriction de sélection, acquisition
lexicale, factorisation de tenseurs, apprentissage non supervisé.
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1 Introduction

Verb subcategorization lexicons and selectional preference models capture two related aspects of
verbal predicate-argument structure, with subcategorization describing the syntactic arguments
taken by a verb, and selectional preferences describing the semantic preferences verbs have for
their arguments. Each type of information can support NLP tasks requiring information about
predicate-argument structure. For example, subcategorization has proved useful for parsing
(Carroll and Fang, 2004; Arun and Keller, 2005; Cholakov and van Noord, 2010), semantic role
labeling (Bharati et al., 2005; Moschitti and Basili, 2005), verb clustering, (Schulte im Walde,
2006; Sun and Korhonen, 2011) and machine translation (Han et al., 2000; Hajič et al., 2002),
while selectional preferences have benefited parsing (Zhou et al., 2011), semantic role labeling
(Gildea and Jurafsky, 2002; Zapirain et al., 2009), and word sense disambiguation (Resnik,
1997; Thater et al., 2010; Seaghdha and Korhonen, 2011).

Verb subcategorization frame (SCF) induction involves identifying the arguments of a verb
lemma in a corpus, and generalizing about the frames taken by the verb, where each frame
includes a number of arguments and their syntactic types. Consider e.g. sentence (1), where the
verb show takes the frame SUBJ-DOBJ-CCOMP (subject, direct object, and clausal complement).

(1) [Our October review]SUBJ comprehensively [shows]VERB [you]DOBJ [what’s in store in
next month’s magazine]CCOMP.

Predicting the set of SCFs for a verb can be viewed as a multi-way co-occurrence problem of
a verb and its different arguments. One of the main challenges is distinguishing arguments
from adjuncts (e.g. temporal, locative, or manner modifiers). Most SCF induction work to date
considers only the co-occurrences of verb lemmas with different grammatical relation types
(subject, object, prepositional phrase, etc.). Taking SCF acquisition to the next level requires
consideration of the lexical fillers of potential argument slots for more accurate argument-
adjunct discrimination.

Selectional preference (SP) induction involves predicting the likelihood of a given lexical item
occurring in an argument slot, and generalizing about the lexical classes which occur in the
slot, which may be dependent on the SCF. In sentence (2), for example, the verb show takes the
frame SUBJ-DOBJ, and the direct object of show in this frame is likely to be inanimate.

(2) [Stalin]SUBJ, who must have been well informed through his network of spies,
[showed]VERB [no emotion]DOBJ.

Most SP induction work to date has focused on discovering lexical preferences within the direct
object slot alone, or at most three-way co-occurrences between verb, subject, and direct object,
and has not considered the full range of potential argument slots for which verbs subcategorize,
thus losing some of the contextual information which may be helpful in learning SPs. Moreover,
the ability of SP acquisition methods to model the full range of verbal arguments, including e.g.
clausal complements, has not been tested.

As the two types of lexical information – SCFs and SPs – are closely interlinked and can
complement each other, it would make sense to acquire them jointly. However, to the best of
our knowledge, no previous work has developed a model for their joint acquisition.

Unsupervised machine learning is attractive for lexical acquisition because it works where
little labeled data is available, and ports easily between tasks and languages. Increasingly
sophisticated techniques have been applied to SP induction (Rooth et al., 1999; Van de Cruys,
2009; Ó Séaghdha, 2010; Ritter and Etzioni, 2010; Reisinger and Mooney, 2011) while work
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on unsupervised SCF acquisition has been limited (Carroll and Rooth, 1996). In this paper we
present a largely unsupervised method for the joint acquisition of SCFs and SPs, adapting a
method that has been successfully used for SP induction (Van de Cruys, 2009) so that it learns
whether a verb subcategorizes for a particular argument slot together with which lexical items
occur in the slot.

Our method uses a co-occurrence model augmented with a factorization algorithm to cluster
verbs from a large corpus. Specifically, we use non-negative tensor factorization (NTF) (Shashua
and Hazan, 2005), a generalization of matrix factorization that enables us to capture latent
structure from multi-way co-occurrence frequencies. The factors that emerge represent clusters
of verbs that share similar syntactic and semantic behaviour. To evaluate the performance
on SCF acquisition, we identify the syntactic behaviour of each cluster. The SCF lexicon that
emerges from the clusters achieves a promising F-score of 68.7 against a gold standard. We
further introduce a novel SP evaluation in which we investigate the model’s ability to induce
preferences for the co-occurrence of a particular verb lemma and all of its arguments at the
same time. The model achieves a high accuracy of 77.8 on this new evaluation. We also perform
a qualitative evaluation which shows that the joint model is capable of learning rich lexical
information about both syntactic and semantic aspects of verb behaviour in data.

2 Related Work

Recent SCF acquisition approaches use the output of an unlexicalized parser to generate SCF

hypotheses, followed by statistical filtering and/or smoothing to remove noise. Briscoe and
Carroll (1997); Korhonen (2002); Preiss et al. (2007) use handcrafted rules to match parser
output to a pre-defined set of SCFs, achieving an F-measure of about 70 against a manually
annotated gold standard, while O’Donovan et al. (2005); Chesley and Salmon-Alt (2006);
Ienco et al. (2008); Messiant (2008); Lenci et al. (2008); Altamirano and Alonso i Alemany
(2010); Kawahara and Kurohashi (2010) induce the inventory of SCFs from parsed corpus data.
Candidate frames are identified by grammatical relation (GR) co-occurrences, often aided by
language-specific heuristics. Statistical filtering or empirically-tuned thresholds are used to select
frames for the final lexicon. These ‘inductive’ approaches have achieved respectable accuracy
(60-70 F-measure against a dictionary) and are more portable than earlier methods. However,
their ability to improve in accuracy is limited by their inability to incorporate information
beyond the GR co-occurrences and heuristics that identify candidate SCFs on a per-sentence
basis. Such cues provide no capacity for learning further from the data, e.g. from the lexical
content of verbal arguments or from other GRs which are not part of the SCF.

Unsupervised machine learning has been applied to tasks where portability is equally important
(Blei et al., 2003; Dinu and Lapata, 2010) but its application to SCF acquisition remains
limited. Carroll and Rooth (1996) combined a head-lexicalized context-free grammar with an
expectation-maximization (EM) algorithm to acquire an SCF lexicon. Dębowski (2009) used a
filtering method based on the point-wise co-occurrence of arguments in parsed data to acquire
a Polish SCF lexicon, but this method does not take the semantics of the verb’s arguments into
account. Lippincott et al. (2012) developed a graphical model for inducing verb frames in
corpus data. The model identifies argument types of verbs but not sets of SCFs taken by a verb,
as full scale SCF systems do.

Recent SP acquisition approaches use latent semantic information to model SPs, making use
of probabilistic models, such as latent Dirichlet allocation (LDA) (Ó Séaghdha, 2010; Ritter
and Etzioni, 2010; Reisinger and Mooney, 2011), or non-negative tensor factorization (NTF)
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(Van de Cruys, 2009). Other approaches solely make use of distributional similarity methods
(Bhagat et al., 2007; Basili et al., 2007; Erk, 2007). All approaches model two-way verb-
argument co-occurrences, with the exception of Van de Cruys (2009) which models three-way
verb-subject-object co-occurrences.

To our knowledge, no previous method has learned SCFs and SPs jointly. Scheible (2010) used
SCFs as features in a Predicate-Argument Clustering (Schulte im Walde et al., 2008) approach to
SP acquisition, but did not evaluate the resulting clusters for SCFs and found that the SP method
did not outperform previous methods. Abend et al. (2009) used co-occurrence measures to
perform unsupervised argument-adjunct discrimination for PPs, but not full SCFs.

Our method makes use of non-negative tensor factorization (NTF) (Shashua and Hazan, 2005).
Tensor factorization is the multilinear generalization of matrix factorization. It has been
extensively studied in the field of statistics (Kolda and Bader, 2009), and has yielded promising
results on SP acquisition (Van de Cruys, 2009). We introduce a novel way of considering SCFs
with an arbitrary number of arguments, and SPs as multi-way co-occurrences in the context of
these larger SCFs. The resulting model provides an ideal framework for joint acquisition of SCF

and SP information. The only form of supervision in the model is parameter estimation and
choice of the best feature set via cross-validation.

3 Subcategorization Frame Inventory

To facilitate thorough qualitative evaluation (Section 5.6), we defined our SCFs in terms of
syntactic slots, and in the form of common GRs. Finer-grained inventories including lexicalized
elements and semantic interpretation were left for future work (see Section 7).

We use the GR types produced by the RASP parser (Briscoe and Carroll, 2002). Altogether
we experimented with combinations of nine GR types out of the 131 which can be headed by
verbs, selected on the basis of their frequency in the parsed BNC corpus and relevance for
subcategorization. For this initial experiment, we focused on higher-frequency arguments since
they will have the greatest impact on downstream applications.

Our first eight basic GR types are as follows. In subject position we included non-clausal subjects
(SUBJ)2, ignoring sentences with clausal subjects, which are much less frequent. Since objects
are key arguments for subcategorization, we included all three object types – direct objects
(DOBJ), second objects of ditransitive constructions (OBJ2), and prepositional arguments (IOBJ).
Although OBJ2 is less frequent than other objects, it is important for identifying ditransitive
frames. We included both types of clausal complements – XCOMP (infinitival/unsaturated) and
CCOMP (finite/saturated) – and also PCOMP, which often signifies a wh-object of a preposition.
We also included particles (PRT). Together, these eight GR types account for 62% of the GRs in the
parsed BNC corpus. Using these GRs, there are 23 SCFs in our gold standard (see Section 5.1),
of which the 15 with the highest type frequency are shown in Table 1.

Although modifiers are generally not included in SCFs (and are also excluded from our gold
standard) we experimented with using them as features, to determine whether their distribution
could help reach a better generalization. We focused on non-clausal modifiers (NCMOD).
Counting them, the nine GR types account for 95% of the GRs in the BNC corpus.

1We count particles (here PRT) as a separate type, though RASP classifies them as a subtype of non-clausal modifiers.
2NCSUBJ in RASP.
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Frame Example sentence Frame Example sentence

SUBJ-DOBJ Susan found the book. SUBJ-XCOMP Susan wanted to find the book.
SUBJ-DOBJ-IOBJ Susan put the book on the table. SUBJ-DOBJ-XCOMP Susan asked Peter to attend.
SUBJ Susan knocked. SUBJ-DOBJ-IOBJ-PRT Susan filled Peter in on the class.
SUBJ-IOBJ Susan appealed to Peter. SUBJ-CCOMP Susan believed that Peter had

found the book.
SUBJ-PRT Susan gave up. SUBJ-DOBJ-CCOMP Susan told Betty that Peter had

found the book.
SUBJ-DOBJ-PRT Susan picked up the book. SUBJ-DOBJ-OBJ2 Susan gave Betty a book.
SUBJ-PCOMP Susan thought about whether

she wanted to go.
SUBJ-IOBJ-XCOMP Susan appeared to Peter to be

worried.
SUBJ-IOBJ-PRT Susan gave up on the project.

Table 1: Fifteen SCFs with highest type frequency in our gold standard, with example sentences.

4 Methodology

4.1 Non-negative tensor factorization

Distributional co-occurrence data is usually represented in the form of a matrix. Matrices are
perfectly suited for the representation of two-way co-occurrence data, but are unable to cope
with multi-way co-occurrence data. We therefore make use of the generalization of a matrix,
which is called a tensor. Tensor objects are able to encode co-occurrence data beyond two
modes. Figure 1 shows a graphical comparison of a matrix and a tensor with three modes. Note
that a tensor need not be restricted to three modes; in fact, our model requires tensors of up
to 12 modes. Such tensors are difficult to represent visually, but the mathematical machinery
remains unchanged.

Figure 1: Matrix representation vs. tensor representation.

In order to create a succinct and generalized model of the extracted data, a statistical factor-
ization technique called non-negative tensor factorization (NTF) is applied to the data. The
NTF model is similar to parallel factor (PARAFAC) analysis – popular in areas such as psychology
and bio-chemistry – with the constraint that all data needs to be non-negative (i.e. ≥ 0).
PARAFAC is a multilinear analogue of the singular value decomposition (SVD), used e.g. in latent
semantic analysis (Landauer and Dumais, 1997). The key idea is to minimize the sum of squares
between the original tensor and the factorized model of the tensor. For an N -mode tensor
T ∈ RD1×D2×...×DN this gives objective function (1), where k is the number of dimensions in the
factorized model and ◦ denotes the outer product.

min
x i∈RD1 ,yi∈RD2 ,...,zi∈RDN

‖ T −
k∑

i=1

x i ◦ yi ◦ . . . ◦ zi ‖2F (1)
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With non-negative tensor factorization, the non-negativity constraint is enforced, which yields a
model with objective function (2).

min
x i∈RD1

≥0 ,yi∈RD2
≥0 ,...,zi∈RDN

≥0

‖ T −
k∑

i=1

x i ◦ yi ◦ . . . ◦ zi ‖2F (2)

The algorithm results in N matrices, indicating the loadings of each mode on the factorized
dimensions. The model for the three-mode case is represented graphically in figure 2, visualizing
the fact that the NTF decomposition consists of the summation over the outer products of N (in
this case three) vectors.

Figure 2: Graphical representation of the NTF as the sum of outer products.

Computationally, the NTF model is fitted by applying an alternating least-squares algorithm. In
each iteration, two of the modes are fixed and the third one is fitted in a least squares sense.
This process is repeated until convergence.3

4.2 Construction of verb-argument tensors

In order to discover SCFs and SPs, we construct a tensor that contains the multi-way co-
occurrences of a verb and its different arguments.

4.2.1 Corpus data

We used a subset of the corpus of Korhonen et al. (2006), which consists of up to 10,000
sentences for each of approximately 6400 verbs, with data taken from five large British and
American cross-domain corpora. To ensure sufficient data for each verb, we included verbs
with at least 500 occurrences, yielding a total of 1993 verbs. The corpus data was tokenized,
POS-tagged, lemmatized, and parsed with the RASP system (Briscoe and Carroll, 2002). RASP

uses a tag-sequence grammar, and is unlexicalized, so that the parser’s lexicon does not interfere
with SCF acquisition. RASP produces output in the form of GRs. Passive sentences and those with
clausal subjects were ignored.

4.2.2 Tensor construction

The corpus data is used to construct an N -mode tensor, where N represents the number of GRs.
Each mode contains a different GR to the verb. Given the eight GRs from Section 3 plus the verb
itself, this yields a 9-mode tensor (up to 12-mode when modifiers and split clausal modifiers
are included; see Section 4.2.3).

For any particular verb instance (i.e. sentence), not every GR type will be instantiated. However,
to model the multi-way co-occurrences in a tensor framework, each instance must have a feature
for every mode to be incorporated into the tensor. Previous applications of non-negative tensor

3The algorithm has been implemented in MATLAB, using the Tensor Toolbox for sparse tensor calculations (Bader and
Kolda, 2007).
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factorization in NLP have not needed a representation for the non-instantiation of a mode. We
introduce an empty, void (–) feature when a particular mode is not instantiated. For example,
sentence (1) from Section 1 would be encoded as the tuple in (3):

(3) 〈showV , reviewN , youP , –, –, –, beV , –, –〉
indicating that the VERB, NCSUBJ, DOBJ, and CCOMP slots are filled with respectively showV ,
reviewN , youP , and beV , and that the remaining slots (IOBJ, OBJ2, PCOMP, XCOMP, PRT) are empty.
(See Section 4.2.3 for alternative feature sets for each mode.)

Our final tensor then records how many times the tuple is attested in the corpus (i.e. how
many times these particular features for the various grammatical relations occur together with
the verb in question). The constructed tensor is then factorized to a limited number of latent
dimensions, minimizing objective function (2). We normalize the factorization matrices to 1, to
ensure a proper probability distribution.

Initially, we experimented with the number of latent dimensions of the factorization model (in
the range 50–200). In further experiments, we retained the number of 150 dimensions, as this
gave us the best results, and the model did not improve beyond 150 dimensions.

4.2.3 Feature sets

We constructed the feature sets for each mode in a number of different ways. Our base model
uses the POS tag of the argument and no other features. We then experimented with a variety of
additional features, based on linguistic intuitions about SCFs and SPs, as follows.

head The lexical head of the argument as well as the POS tag is used;

extpp PPs are extended to include the head of the PP’s object, e.g. to_LondonN (for the head
models) or to_N (for the POS models) instead of simply to;

split both XCOMP and CCOMP are split up into two different modes to differentiate between null
and lexicalized complementizers (e.g. for CCOMP, whether the complementizer is null or
that);

mod modifiers (NCMOD) are included as an extra mode in the tensor.

Only the models with head features are relevant for SP acquisition. The head features also
test how sensitive the learning of SCFs is to lexical-semantic as opposed to purely syntactic
generalizations. The extended PP features provide additional lexical-semantic information. The
clausal complement subtypes are available in the RASP output and offer a finer-grained syntactic
analysis of these GRs. Finally, we used modifiers to test whether modifier co-occurrences,
although (by definition) not part of the SCFs, might still be helpful in generalizing about
subcategorization (i.e., maybe verbs taking similar frames also take similar modifiers). For each
mode, we included the features that occurred with frequency ≥ 500 in the corpus, to maintain
tractability.

For example, sentence (1) from Section 1 would be encoded as the tuple in (4) in the base
POS-only model, and the tuple in (5) in the model with head and modifier features.

(4) 〈showV , N, P, –, –, –, V, –, –〉

(5) 〈showV , reviewN , youP , –, –, –, beV , –, –, comprehensivelyR〉
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5 Experiment 1: SCF Induction

5.1 Evaluation method

SCF lexicons are traditionally evaluated against gold standards. We took the gold standard of
Korhonen et al. (2006), which is a superset of SCFs in large dictionaries, and created a version
using our eight basic GR types to define the SCFs. The resulting gold standard contains 183
general language verbs, with an average of 7.4 SCFs per verb. No attempt is made to distinguish
between multiple senses of polysemous verbs; SCFs belonging to all senses are included for
each lemma in the gold standard.

We evaluated the acquired SCF lexicons using type precision (percentage of SCF types that the
system proposes which are correct), type recall (percentage of SCF types in the gold standard
that the system proposes), and F-measure (the harmonic mean of type precision and recall).

We have two baselines. For baseline 1, we adopt the baseline of O’Donovan et al. (2005) which
uniformly assigns to all verbs the two SCFs known to be most frequent in general language,
transitive (SUBJ-DOBJ) and intransitive (SUBJ). This is a challenging baseline for SCF acquisition
because of the Zipfian nature of SCF distributions: a small number of frequent SCFs are taken by
the majority of verbs. For baseline 2, as described in Section 4.2.3, we use the base model with
only POS features and none of the additional lexical or modifier features.

5.2 Mapping latent dimensions to SCFs

In order to evaluate this technique for SCF acquisition, we need to characterize each latent
dimension according to its syntactic behaviour, i.e. map each dimension to a characteristic SCF.

Each latent dimension z is represented by a set of N vectors, indicating the loadings of each mode
on z. Because the loadings were normalized, each vector contains a probability distribution,
over verbs or features. For a dimension z and a given mode (i.e. GR slot) we use the probability
p(–|z) of a void appearing in that slot to decide whether that slot is characteristically empty or
filled for that dimension. For the verb mode, we use the probability p(v|z) to decide whether a
verb v takes that dimension’s characteristic SCF.

The mapping thus has two parameters. The first, θverb, represents the minimum p(v|z) for v
to be assigned the characteristic SCF of z. Based on early experiments, we chose to test three
values for θverb, 0.001, 0.002, and 0.003.

The second parameter, θvoid, represents the maximum value of p(–|z) at which the argument slot
will be considered part of the SCF of z. For example, if p(–|z)> θvoid in the vector representing
the DOBJ mode for z, then the characteristic SCF of z does not include a direct object. We
did not apply the θvoid threshold to subjects, but rather assumed that all characteristic SCFs
include subjects; early experiments showed that subjects were otherwise sometimes erroneously
excluded from the SCFs because the data contained high numbers of subjectless embedded
clauses. For all other modes, we tested θvoid values from 0.1 to 0.8 in increments of 0.1.

The mapping process can be thought of as labeling the clusters produced by the tensor factoriza-
tion. E.g. for a latent dimension z with a void value below θvoid for the DOBJ and IOBJ modes, its
label is simply SUBJ-DOBJ-IOBJ. This label is assigned as an SCF to all the verbs with probabilities
over θverb in z.

If a dimension’s characteristic SCF does not correspond to an SCF in the gold standard, that

2710



Frame # dims Frame # dims

SUBJ-DOBJ 29 SUBJ-XCOMP 17
SUBJ-DOBJ-IOBJ 9 SUBJ-DOBJ XCOMP 5
SUBJ 24 SUBJ-DOBJ-IOBJ-PRT 0
SUBJ-IOBJ 12 SUBJ-CCOMP 26
SUBJ-PRT 7 SUBJ-DOBJ-CCOMP 0
SUBJ-DOBJ-PRT 5 SUBJ-DOBJ-OBJ2 5
SUBJ-PCOMP 3 SUBJ-IOBJ-XCOMP 0
SUBJ-IOBJ-PRT 3

Table 2: SCFs in order of type frequency in gold standard, with number of latent dimensions
mapped to them (model features: POS, modifiers).

cluster is excluded from the evaluation. This typically happens with high values of θvoid because
too many argument slots are simultaneously included in the SCF.

Note that multiple dimensions may be mapped to each SCF, because we chose the number
of latent dimensions to be greater than the number of SCFs in the inventory. This decision
allows the system to detect semantic structure in the data at a finer-grained level, which
we hypothesized would improve overall accuracy on subcategorization acquisition, and to
discover multiple lexical classes within a single argument slot. The relationship between
number of dimensions mapping to an SCF and the frequency of the SCF is somewhat complex.
To the extent that different verbs appear in different clusters, we expect that a larger number
of dimensions mapping to an SCF roughly corresponds to higher type frequency of the SCF.
However, some clusters contain more verbs than others; also, more clusters may indicate more
semantic variability in argument slot fillers, without corresponding to higher frequency. A
general relationship between type frequency and number of dimensions can be seen in Table 2,
although note the high number of clusters mapped to the clausal complement frames SUBJ-
XCOMP and SUBJ-CCOMP, possibly because these relations are semantically variable and used for
adjuncts as well as arguments.

5.3 Tuning parameters

We used ten-fold cross-validation to tune the parameters θverb and θvoid, as well as to select the
best feature combination (see Section 4.2.3). We randomly divided our test verbs into ten sets,
each containing either 18 or 19 verbs. For each fold, we selected the parameters that gave the
highest accuracy on the remaining nine-tenths of the verbs agaist the gold standard, and used
those settings to acquire the lexicon for the 18 or 19 verbs in the fold.

For all ten folds, the best result was achieved with θverb = 0.001 and θvoid = 0.4, and with
modifier features, but without extended PPs or split clause types. For seven of the folds, the
best result was achieved with POS features, and for the other three with head features.

5.4 Results

Table 3 shows the results for our system after tuning with cross-validation. The parameters are:
θverb = 0.001, θvoid = 0.4, POS and modifier features. Precision and recall are averaged over
the ten folds. The standard deviation for precision was 4.3 and for recall 5.9. The final system
achieves an F-measure of 68.7, well above the baseline 1 F-measure of 36.9, and nearly four
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P R F

Baseline 1 86.3 23.5 36.9
Baseline 2 (POS features) 53.1 83.3 64.8
Final system 61.0 78.5 68.7

Table 3: Results of cross-validation experiment. Precision and recall averaged over ten folds.
F-score calculated as harmonic mean of the average P and R.

points better than the baseline 2 F-measure of 64.8. All of the improvement over baseline 2 is
in precision, which shows that adding features beyond simple GR co-occurrences is beneficial to
accurate SCF acquisition. Because of the Zipfian nature of SCF distributions, the system does not
match the precision of baseline 1.

Direct comparison against previous unsupervised SCF acquisition methods on English was not
possible because of the use of different data and frame inventories. However, best current
methods involving handcrafted rules have reached a ceiling at an F-measure of about 70
(Korhonen et al., 2006; Preiss et al., 2007). Our results are promising considering the challenges
of less supervised lexical acquisition.

5.5 Investigation of features

We also investigated the contribution of the different feature sets on the entire gold standard,
using the values for θverb and θvoid which emerged from the cross-validation. The results of the
different models are shown in Table 4 (note that the best result is slightly different from that in
Table 3 because it is on the entire gold standard, not averaged over folds).

Model
head PP split mod P R F cov

1 • 61.4∗∗,†† 81.1∗∗,†† 69.9†† 183
2 • • 63.9∗∗,†† 76.4∗∗,†† 69.6†† 183
3 • • 67.2∗∗,†† 70.4∗∗,†† 68.8†† 183
4 • • 59.3†† 80.9†† 68.4†† 183
5 • 58.7∗∗,†† 81.2∗∗,†† 68.2†† 183
6 • • 60.5∗,†† 77.9∗∗,†† 68.1†† 183
7 • • 58.7∗∗,†† 81.2∗∗,†† 68.1†† 182
8 • • • 61.2∗∗,†† 76.0∗∗,†† 67.8†† 183
9 • • • 67.5∗∗,†† 67.7∗∗,†† 67.6†† 183

10 • 56.1∗∗,†† 83.1∗∗ 67.0†† 183
11 • • 60.2†† 74.3∗∗,†† 66.5† 182
12 • • • 61.8∗,†† 71.4∗,†† 66.3 183
13 • 59.8∗∗,†† 73.6∗∗,†† 66.0 183
14 53.1∗∗ 83.3∗∗ 64.8∗ 183
15 • • • 65.1†† 60.3∗∗,†† 62.6∗∗,† 183
16 • • • • 63.3†† 52.6†† 57.5†† 181

Table 4: Results for each feature set, with 150 dimensions, θverb = 0.001, θvoid = 0.4. ∗∗ signif-
icant difference from next row with p < 0.01, ∗ with p < 0.05. †† significant difference from
baseline (row 14) with p < 0.01, † with p < 0.05.
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The differences in F-measure between the top few models are rather small, but the models show
wide variance in precision and recall. Using the head words of the arguments as features seems
to favor precision (rows 2, 3, 9, 15, 16), while using POS tags favors recall. This is probably
because evidence for different arguments is less sparse using POS tags, making less frequent
frames easier to identify, but finer-grained distinctions more difficult. The highest F-scores are
achieved with modifier features (rows 1, 2); however, these models strongly favor recall over
precision, suggesting that the general applicability of modifiers to many verb classes interferes
with accurate identification of SCFs. More balanced models have head features and split clausal
complement types (row 3), or head features, extended PPs, and split clausal types (row 9),
without losing out on F-score. This suggests that lexical-semantic features are valuable for SCF

acquisition. Another trend is towards more accurate models with fewer additional features;
individual features and pairs of features seem to provide the most improvement (rows 1-7) over
the base model (row 14), but the model with all additional features (row 16) has markedly
worse performance, which may indicate a data sparsity problem.

We carried out significance tests for the mentioned model differences using stratified shuffling
(Yeh, 2000). These tests indicate that most of the models (rows 1-11) have significantly higher
F-score than the baseline, and most show significant pairwise differences in precision and recall.

Parameter tuning with cross-validation resulted in a θvoid of 0.4 (though exploration of the
models in Table 4 showed that some models performed better with even lower values). This
means that the model only needs to assign a relatively low confidence score to the void feature
to infer that a slot is not part of an SCF. This is probably because adjuncts and other noise in
the data means that these slots are filled some of the time. We observed many cases of void
probabilities nearly equal to 1 in various dimensions – most verbs never occur with an OBJ2, for
example. However, void probabilities tend to be fairly low for CCOMP and XCOMP.

5.6 Qualitative evaluation

Table 5 shows the accuracy by SCF for the fifteen most frequent frames, using the final model that
resulted from cross-validation. The system performs very well on a number of SCFs, especially
the most frequent ones such as SUBJ-DOBJ, SUBJ-DOBJ-IOBJ, and SUBJ, but also on some SCFs
involving the semantically important particle verbs, such as SUBJ-DOBJ-PRT and SUBJ-IOBJ-PRT.
Precision is lower on frames involving clausal complements (XCOMP and CCOMP), possibly
because these GRs are used frequently for adjuncts. Accuracy is also poor on SUBJ-PCOMP and
SUBJ-DOBJ-OBJ2. These GRs are rarer and may be subject to parser errors (e.g. OBJ2).

6 Experiment 2: SP Induction

6.1 Introduction

Our second experiment looks at the model’s ability to induce SPs. We investigate the model’s
ability to induce multi-way SPs, i.e. the preference of the model for the co-occurrence of a
particular verb and all of its particular arguments at the same time.

The calculation of a SP value according to our NTF model is fairly straightforward. Recall that
our model yields probabilities p(v|z), i.e. the probability of a verb given a latent dimension,
and, for each argument to the verb, p(g|z), i.e. the probability of an argument given a latent
dimension. The final SP value SP(v, GR) for a particular verb v and a list of arguments GR then
amounts to calculating the product of the probabilities of the verb and the various GRs given a
particular latent dimension, and summing over all dimensions (equation 3).
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Frame P R F Frame P R F

SUBJ-DOBJ 95.4 98.8 97.0 SUBJ-XCOMP 44.0 98.6 60.9
SUBJ-DOBJ-IOBJ 89.6 88.5 89.0 SUBJ-DOBJ-XCOMP 45.9 79.4 58.1
SUBJ 82.7 98.7 90.0 SUBJ-DOBJ-IOBJ-PRT 0.0 0.0 0.0
SUBJ-IOBJ 80.6 91.5 85.7 SUBJ-CCOMP 35.9 100.0 52.8
SUBJ-PRT 75.2 87.1 80.7 SUBJ-DOBJ-CCOMP 33.3 71.1 45.4
SUBJ-DOBJ-PRT 72.8 83.0 77.6 SUBJ-DOBJ-OBJ2 20.0 90.3 32.8
SUBJ-PCOMP 56.9 45.7 50.7 SUBJ-IOBJ-XCOMP 0.0 0.0 0.0
SUBJ-IOBJ-PRT 71.9 83.1 77.1

Table 5: Results by SCF for fifteen most frequent frames in gold standard with best-performing
model.

SP(v, GR) =
k∑

i=1

p(v|zi)
∏
g∈GR

p(g|zi) (3)

We evaluate our method’s ability to induce SPs using the lexicalized (HEAD) model that achieves
the best score in our first experiment, i.e. model 2 in Table 4.

6.2 Evaluation method

To evaluate the results of the NTF model with regard to SPs, we make use of a pseudo-
disambiguation task (similar to the one used by Rooth et al. (1999)). The task allows us
to evaluate the generalization capabilities of the model. For a particular tuple (viz. a verb and
its various arguments) that appears in a held-out test corpus, we generate random instances
in which one or several arguments are substituted by random instantiations. We exhaustively
substitute every individual argument, as well as the various random combinations.4 For the
sentence in (1), this yields instances like:

(6) 〈showV , rabbitN , youP , –, –, –, beV , –, –〉
(7) 〈showV , consumptionN , tunnelN , –, –, –, dreamV , –, –〉
We then calculate SP values according to our model, both for the corpus instance and the
random instances. A tuple is considered correct if our model prefers the corpus instance over
all random instances. Accuracy is then calculated by averaging over all instances that are part
of the test corpus.

We compare our NTF model to a simple non-negative matrix factorization (NMF) model, com-
parable to the unsupervised model presented by Rooth et al. (1999). For this model, a matrix
was constructed that contains the pairwise co-occurrence frequencies of verbs and their various
arguments. As noted before, a matrix is only able to represent two modes; hence, the first mode
consists of the verbs, while the second mode contains the concatenated list of the different
argument features. We used the same number of features as with the NTF model, and also
factorized to 150 dimensions. According to the NMF model, a tuple is considered correct if, for
each argument to the verb, the model prefers the verb-argument pair containing the attested
argument over the verb-argument pair containing the random substitute. As a baseline, we

4We do not substitute empty argument slots with lexical arguments; neither do we substitute filled arguments slots
with void values. This experiment solely focuses on the induction of selectional preferences; the induction of SCFs is
evaluated in experiment 1.
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include an uninformed random model, which makes a random choice among the various
possibilities.5

The models are evaluated using ten-fold cross-validation: the corpus is divided into 10 equal
parts; in each fold, models are trained on nine tenths of the corpus, and tested on the remaining
tenth.

6.3 Results

The results of the ten-fold cross-validation are shown in table 6. The NTF model clearly
outperforms the matrix factorization model with regard to the reconstruction of SPs, with
the NTF model reaching a score about 10% higher than its NMF counterpart. These results
indicate that the use of multi-way data leads to a richer and more accurate representation
of SPs. For comparison, (Van de Cruys, 2009) achieved accuracy of 90.89 on a three-way
pseudo-disambiguation task, which is less complex than our eight-way task.

accuracy (%)

baseline 29.21 ± .08
NMF 69.71 ± .28
NTF 77.78 ± .17

Table 6: Selectional preference accuracy using ten-fold cross-validation (mean accuracy and
standard deviation)

6.4 Qualitative evaluation

Additionally, we performed a qualitative evaluation of the 150 latent dimensions yielded by our
NTF model. This evaluation shows that our model is indeed able to capture semantic information
from the data. Recall from Section 5.2 that multiple dimensions map to a single SCF. Our cluster
analysis shows that such dimensions reflect semantic information. Below are three example
dimensions (denoted by the top 10 verbs with highest value on each dimension) that all map to
a simple transitive SCF.

dim 29 buy, sell, use, collect, produce, handle, remove, purchase, obtain, eat

dim 38 kill, love, see, like, marry, know, meet, visit, help, say

dim 44 examine, identify, see, consider, assess, investigate, discuss, study, determine, explore

The three different transitive SCFs clearly exhibit different semantic properties. Dimension 29
seems to represent a general ‘trading’ dimension, in which the DOBJ argument contains inanimate
objects, largely goods. The DOBJ argument has nouns such as thing, material, food,. . . as its
top features. Dimension 38, on the other hand, is a transitive frame where the DOBJ argument
takes animate objects. The last dimension 44 represents a transitive frame in which the DOBJ

argument takes abstract objects.

Among the dimensions that map to the SUBJ-IO SCF, i.e. a single PP argument, there are also
some interesting semantic and syntactic distinctions. Dimension 91 clearly represents a ‘travel’
cluster with a location complement; the IO slot for this dimension is mostly PPs lexicalized with
to. Dimension 122 is a ‘communication’ cluster, and again most of the prepositions in the IO

slot are to. Dimension 123 consists of verbs that occur with at, largely vision and non-verbal

5Note that the number of possibilities for both tensor and matrix model is exactly the same.
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communication verbs. Finally, dimension 134 is interesting, because there is no clear semantic
cohesion, but it represents cluster of verbs that take PP for. This indicates that the model is
learning both semantic and syntactic regularities.
dim 91 go, come, return, move, walk, get, run, rush, travel, fly

dim 122 talk, speak, listen, write, belong, happen, appeal, come, say, lie

dim 123 look, stare, smile, laugh, shout, gaze, glance, glare, grin, scream

dim 134 wait, pay, look, care, work, ask, vote, call, prepare, apply
The results presented here indicate that our model is able to capture syntactic as well as
semantic properties. On a coarse-grained level, our model is able to induce a verb’s different SCF

frames. When we zoom in to the level of individual clusters, we notice that these clusters are
often semantically cohesive, expressing the selectional preferences of the verb’s argument slots.
The ability to capture both syntax and semantics is an important advantage of our method.

7 Conclusion
We have presented a novel method for joint unsupervised SCF and SP acquisition which allows
the incorporation of a range of features (syntactic, lexical and semantic) in the acquisition
process. Although SCFs and SPs are closely related and can complement each other, to the best
of our knowledge, no previous work has proposed a joint model for them.

Applying NTF to the multi-way co-occurrence tensor of verbs and their arguments, we are able
to cluster verbs from a large corpus according to their syntactic and semantic behaviour. The
SCF lexicon that emerges from the clusters yields an F-score of 68.7 against a gold standard,
outperforming lexicons produced by our baseline methods. This performance is promising
for a largely unsupervised method. The model yields an accuracy of 77.8 on a new pseudo-
disambiguation evaluation for SPs, in which all arguments of the verb are considered at once,
clearly outperforming a matrix factorization model. Our qualitative evaluation reveals that the
method is indeed capable of learning rich lexical information about both syntactic and semantic
aspects of verb behaviour in corpus data.

In the future, we plan to improve our approach in several directions. In addition to improving
the detection of low accuracy SCFs through the use of lexical features that may help to distinguish
arguments from adjuncts in clausal complements, we plan to improve precision by using e.g.
statistical filtering. We also plan to extend the model to acquire finer-grained SCFs for English.
This will involve e.g. refining SCFs with lexicalized elements and including semantically-based
SCFs in the inventory, making use of the factorization method’s ability to induce latent structure,
as demonstrated by the SP evaluation. Finally, we intend to improve our SP acquisition through
the use of a more extensive feature set.

A key advantage of this approach is that it is able to combine syntactic SCF and semantic SP

acquisition. In the future, we plan to explore the joint induction of verb syntax and semantics
in greater depth and look into modelling additional information about semantic verb classes
which tend to capture similar SCF and SP behaviour. This could facilitate inducing a more
comprehensive lexical resource that supplements the SCFs and SPs with a verb classification – in
the style of VerbNet (Kipper-Schuler, 2005) – providing generalizations that can be useful for a
wider range of NLP tasks.
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