
Flexible, High Performance Convolutional
Neural Networks for Image Classification

Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, Jürgen Schmidhuber

IDSIA, USI and SUPSI
Galleria 2, 6928 Manno-Lugano, Switzerland
{dan,ueli,jonathan,luca,juergen}@idsia.ch

Abstract

We present a fast, fully parameterizable GPU im-
plementation of Convolutional Neural Network
variants. Our feature extractors are neither care-
fully designed nor pre-wired, but rather learned in
a supervised way. Our deep hierarchical architec-
tures achieve the best published results on bench-
marks for object classification (NORB, CIFAR10)
and handwritten digit recognition (MNIST), with
error rates of 2.53%, 19.51%, 0.35%, respectively.
Deep nets trained by simple back-propagation per-
form better than more shallow ones. Learning is
surprisingly rapid. NORB is completely trained
within five epochs. Test error rates on MNIST
drop to 2.42%, 0.97% and 0.48% after 1, 3 and 17
epochs, respectively.

1 Introduction

The human visual system efficiently recognizes and local-
izes objects within cluttered scenes. For artificial systems,
however, this is still difficult due to viewpoint-dependent ob-
ject variability, and the high in-class variability of many ob-
ject types. Deep hierarchical neural models roughly mimick
the nature of mammalian visual cortex, and by community
consensus are among the most promising architectures for
such tasks. The most successful hierarchical object recog-
nition systems all extract localized features from input im-
ages, convolving image patches with filters. Filter responses
are then repeatedly sub-sampled and re-filtered, resulting in a
deep feed-forward network architecture whose output feature
vectors are eventually classified. One of the first hierarchi-
cal neural systems was the Neocognitron [Fukushima, 1980]
which inspired many of the more recent variants.

Unsupervised learning methods applied to patches of nat-
ural images tend to produce localized filters that resemble
off-center-on-surround filters, orientation-sensitive bar detec-
tors, Gabor filters [Schmidhuber et al., 1996; Olshausen and
Field, 1997; Hoyer and Hyvärinen, 2000]. These findings
in conjunction with experimental studies of the visual cor-
tex justify the use of such filters in the so-called standard
model for object recognition [Riesenhuber and Poggio, 1999;
Serre et al., 2007; Mutch and Lowe, 2008], whose filters are
fixed, in contrast to those of Convolutional Neural Networks

(CNNs) [LeCun et al., 1998; Behnke, 2003; Simard et al.,
2003], whose weights (filters) are randomly initialized and
changed in a supervised way using back-propagation (BP).

Despite the hardware progress of the past decades, compu-
tational speed is still a limiting factor for CNN architectures
characterized by many building blocks typically set by trial
and error. To systematically test the impact of various archi-
tectures on classification performance, we present a fast CNN
implementation on Graphics Processing Units (GPUs). Previ-
ous GPU implementations of CNNs [Chellapilla et al., 2006;
Uetz and Behnke, 2009; Strigl et al., 2010] were hard-coded
to satisfy GPU hardware constraints or use general purpose
libraries, whereas our implementation is flexible and fully on-
line (i.e., weight updates after each image). A notable excep-
tion is [Jarrett et al., 2009] who performed a thorough analy-
sis of the influence of all building blocks of a multistage ar-
chitecture on recognition performance. Our implementation
allows for training large CNNs within days instead of months,
such that we can investigate the influence of various structural
parameters by exploring large parameter spaces [Pinto et al.,
2009] and performing error analysis on repeated experiments.

We evaluate various networks on the handwritten digit
benchmark MNIST [LeCun et al., 1998] and two image clas-
sification benchmarks: NORB [LeCun et al., 2004] and CI-
FAR10 [Krizhevsky, 2009].

2 Convolutional neural networks

CNNs are hierarchical neural networks whose convolutional
layers alternate with subsampling layers, reminiscent of sim-
ple and complex cells in the primary visual cortex [Wiesel
and Hubel, 1959]. CNNs vary in how convolutional and sub-
sampling layers are realized and how the nets are trained.

2.1 Image processing layer

The image processing layer is an optional pre-processing
layer of predefined filters that are kept fixed during train-
ing. Thus additional information besides the raw input im-
age can be provided to the network, such as edges and gra-
dients. In particular, we find that a contrast-extracting layer
[Fukushima, 2003] helps to improve the recognition rate for
NORB.

1237

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



2.2 Convolutional layer

A convolutional layer is parametrized by the size and the
number of the maps, kernel sizes, skipping factors, and the
connection table. Each layer has M maps of equal size (Mx,
My). A kernel (blue rectangle in Fig 1) of size (Kx, Ky) is
shifted over the valid region of the input image (i.e. the kernel
has to be completely inside the image). The skipping factors
Sx and Sy define how many pixels the filter/kernel skips in x-
and y-direction between subsequent convolutions. The size
of the output map is then defined as:

Mn
x =

Mn−1
x −Kn

x

Sn
x + 1

+ 1; Mn
y =

Mn−1
y −Kn

y

Sn
y + 1

+ 1 (1)

where index n indicates the layer. Each map in layer Ln is
connected to at most Mn−1 maps in layer Ln−1. Neurons of
a given map share their weights but have different receptive
fields.

2.3 Max-pooling layer

The biggest architectural difference between our implemen-
tation and the CNN of [LeCun et al., 1998] is the use of
a max-pooling layer instead of a sub-sampling layer. No
such layer is used by [Simard et al., 2003] who simply skips
nearby pixels prior to convolution, instead of pooling or av-
eraging. [Scherer et al., 2010] found that max-pooling can
lead to faster convergence, select superior invariant features,
and improve generalization. A theoretical analysis of feature
pooling in general and max-pooling in particular is given by
[Boureau et al., 2010]. The output of the max-pooling layer is
given by the maximum activation over non-overlapping rect-
angular regions of size (Kx, Ky). Max-pooling enables posi-
tion invariance over larger local regions and downsamples the
input image by a factor of Kx and Ky along each direction.

2.4 Classification layer

Kernel sizes of convolutional filters and max-pooling rectan-
gles as well as skipping factors are chosen such that either
the output maps of the last convolutional layer are downsam-
pled to 1 pixel per map, or a fully connected layer combines
the outputs of the topmost convolutional layer into a 1D fea-
ture vector. The top layer is always fully connected, with one
output unit per class label.

3 GPU implementation

The latest generation of NVIDIA GPUs, the 400 and 500 se-
ries (we use GTX 480 & GTX 580), has many advantages
over older GPUs, most notably the presence of a R/W L2
global cache for device memory. This permits faster pro-
grams and simplifies writing the code. In fact, the cor-
responding transfer of complexity into hardware alleviates
many software and optimization problems. Our experiments
show that the CNN program becomes 2-3 times faster just by
switching from GTX 285 to GTX 480.

Manual optimization of CUDA code is very time-
consuming and error prone. We optimize for the new ar-
chitecture, relying on the L2 cache for many of the device
memory accesses, instead of manually writing code that uses

Figure 1: Architecture of a convolutional neural network with
fully connected layers, kernel sizes of 5 x 5 and skipping fac-
tors of 1.

textures and shared memory. Code obtained by this prag-
matic strategy is fast enough. We use the following types
of optimization: pre-computed expressions, unrolled loops
within template kernels, strided matrices to obtain coalesced
memory accesses and registers wherever possible. Additional
manual optimizations are possible in case future image clas-
sification problems will require even more computing power.

3.1 Data structures

Both outputs y and deltas δ of layer Ln are 2D strided. Their
original size is Mx ×MMy , but they are horizontally strided
with a pitch of 32 floats (we use this stride for all 2D data),
resulting in coalesced memory accesses. The vertical stride
avoids additional bounding tests in CUDA kernels.

All connections between maps of consecutive layers Ln−1

and Ln are stored in matrix Cn. Each row of Cn contains
all connections that feed into a particular map in layer Ln.
Because we aim for a flexible architecture with partially con-
nected layers, in the first column we store the number of pre-
vious connections. This index is useful for Forward Propaga-
tion (FP) and Adjusting Weights (AW) CUDA kernels. The
second column stores the number of connections, followed
by corresponding indices of maps in Ln−1 connected to the
current map.

For BP and FP, analogous information about connections
is needed. We therefore store backward connections in
CBP . AW requires a list of all map connections (see Sub-
section 3.4), stored as an array of map index pairs. Dealing
with biases in BP kernel requires to know where the weights
of particular connections start; this information is stored in a
2D array WIDXBP of size Mn ×Mn−1.

3.2 Forward propagation

A straightforward way of parallelizing FP is to assign a thread
block to each map that has to be computed. For maps with
more than 1024 neurons, the job is further split into smaller

1238



blocks by assigning a block to each line of the map, because
the number of threads per block is limited (1024 for GTX
480). A one to one correspondence between threads and
the map’s neurons is assumed. Because of weight sharing,
threads inside a block can access data in parallel, in particu-
lar the same weights and inputs from the previous layer. Each
thread starts by initializing its sum with the bias, then loops
over all map connections, convolving the appropriate patch
of the input map with the corresponding kernel. The output is
obtained by passing the sum through a scaled tanh activation
function, and is then written to device memory.

3.3 Backward propagation

BP of deltas can be done in two ways: by pushing or by
pulling. Pushing deltas means taking each delta from the cur-
rent layer and computing the corresponding deltas for the pre-
vious layer. For an architecture with shared weights this has
the disadvantage of being hard to code. Each delta from the
current layer contributes to many deltas in the previous layer,
which translates into a lot of programming. There are two
ways of avoiding this: either writing partial deltas to a sepa-
rated block of memory and then putting everything together
by calling another kernel (slow because of a tremendous in-
crease in the number of memory accesses, and the need of
another kernel), or using atomic writes (to avoid data haz-
ards) to update deltas (very slow because many writings are
serialized). We implement pulling deltas, which has almost
none of the above speed-limiting drawbacks, but is a bit more
complicated.

The (uni- or bi-dimensional) thread grid assigns a (bi- or
uni-dimensional) thread block to each map in the previous
layer and a thread to each neuron in every map. Similar to FP,
for maps with more than 1024 neurons, the 2D grid is further
split into smaller 1D blocks by assigning a 2D block to each
row of the map. Each thread computes the delta of its corre-
sponding neuron by pulling deltas from the current layer. For
every neuron in the previous layer we have to determine the
list of neurons in the current layer which are connected to it.
Let us consider neuron (i, j) from a map in layer Ln−1, and
then assume that (x, y) are the coordinates of neurons in maps
of Ln that contribute to the delta of neuron (i, j). The (x, y)
neuron is connected to kernel size number neurons (Kx×Ky)
from each connected map in the previous layer. The indices in
Ln−1 of the neurons connected through a kernel to the (x, y)
neuron are:

x(Sx + 1) ≤ i ≤ x(Sx + 1) +Kx − 1,

y(Sy + 1) ≤ j ≤ y(Sy + 1) +Ky − 1.

We can now compute the inequalities for (x, y):

i−Kx + 1

Sx + 1
≤ x ≤ i

Sx + 1
,

j −Ky + 1

Sy + 1
≤ y ≤ j

Sy + 1
.

Because (x, y) has to be inside the map, the final inequalities
are:

max
(⌈

i−Kx+1
Sx+1

⌉
, 0
)

≤ x ≤ min

(⌊
i

Sx + 1

⌋
,Mx − 1

)
,

max
(⌈

j−Ky+1
Sy+1

⌉
, 0
)

≤ y ≤ min

(⌊
j

Sy + 1

⌋
,My − 1

)
.

The above inequalities state that the delta of neuron (i, j)
from Ln−1 is computed from deltas of neurons in a rectan-
gular area in maps of Ln (Fig. 2). After summing up the
deltas, each thread multiplies the result by the derivative of
the activation function.

Figure 2: Back propagating deltas. A connection between
two maps from two consecutive layers is displayed. The map
in Ln−1 has 29 x 29 neurons; the map in Ln has 13 x 13
neurons. They are linked through a 5 x 5 kernel K. Skipping
factors of Sx = 1 and Sy = 1 are assumed. Arrows and
colors depict the correspondence between neurons in Ln−1

and their sources in Ln.

3.4 Adjusting weights

FP and BP have a grid over the list of maps, but the AW thread
grid is over the list of kernels (filters) between maps of two
consecutive layers. The 1D grid has a block for each connec-
tion between two maps. Thread blocks are 2D, with a cor-
responding thread for every kernel weight. The bias weight
is included as an entire row of threads, thus requiring thread
blocks to have (Kx+1)×Ky threads. Most of the time these
additional Ky threads will wait, thread (0,0) being activated
only for blocks that have to process the bias.

4 Experiments

We use a system with a Core i7-920 (2.66GHz), 12 GB DDR3
and four graphics cards: 2 x GTX 480 and 2 x GTX 580. The
correctness of the CPU version is checked by comparing the
analytical gradient with its finite difference approximation.
On GPU this is not possible because all computations are per-
formed with single precision floating point numbers. Hence
the GPU implementation’s correctness is checked by com-
paring its results to those of a randomly initialized net after
training it for several epochs on the more accurate CPU ver-
sion. Obtaining identical results after trillions of operations
is a strong indication of correctness.

The implemented CNN’s plain feed-forward architecture is
trained using on-line gradient descent. All images from the
training set are used for training and also for validation. If
deformations are enabled, only the images from the training
set will be deformed. Weights are initialized according to a
uniform random distribution in the range [−0.05, 0.05]. Each

1239



neuron’s activation function is a scaled hyperbolic tangent:
y(a) = 1.7159 tanh(0.6666a) [LeCun et al., 1998].

We pick the trained CNN with the lowest validation error,
and evaluate it on the test set (Test for best Validation - TfbV).
The best test error (bT) is also listed for all experiments. The
reported computation times per epoch include training, vali-
dation and testing as well as all data transfers.

4.1 Experiments on MNIST

For the MNIST dataset the networks are trained on deformed
images, continually generated in on-line fashion. Affine
(translation, rotation, scaling, horizontal shearing) and elas-
tic deformations [Simard et al., 2003] are combined. We use
a variable learning rate that shrinks by a multiplicative con-
stant after each epoch, from 10−3 down to 3 · 10−5 after 500
epochs.

Table 1: Error rates on MNIST test set for randomly con-
nected CNNs with 2 to 6 convolutional layers with M Maps
and an optional fully connected Layer with N Neurons, vari-
ous kernel sizes and skipping factors were used.

#M, #N TfbV
in Hidden Layers [%]

20M-60M 1.02
20M-60M-150N 0.55

20M-60M-100M-150N 0.38
20M-40M-60M-80M-100M-120M-150N 0.35

Fully connected convolutional layers lead to an exploding
number of network connections and weights, making train-
ing of big and deep CNNs for hundreds of epochs impractical
even on GPUs. Partial connectivity alleviates this problem
and is also biologically more plausible. We reduce the num-
ber of connections between convolutional layers in a random
way [LeCun et al., 1998; Jarrett et al., 2009]. Table 1 lists
results of various networks with 2 to 7 hidden layers with ran-
dom connections. Additional layers result in better networks,
the best one achieving a test error of 0.35% for best validation
and a best test error of 0.27%. The best previous CNN result
on MNIST is 0.40% [Simard et al., 2003]. A 0.35% error rate
was recently also obtained by a big, deep MLP [Ciresan et al.,
2010] with many more free parameters. Deeper nets require
more computation time to complete an epoch, but we observe
that they also need fewer epochs to achieve good test errors.
The deepest CNN from Table 1 reaches 2.42%, 0.97% and
0.48% after one, three and seventeen epochs, respectively.
On the other hand, the network with 4 instead of 7 hidden
layers reaches 4.71%, 1.58%, 0.68% after one, three and sev-
enteen epochs, achieving a test error below 0.50% after only
34 epochs. This shows once more that deep networks, con-
trary to common belief, can be trained successfully by back-
propagation. Despite the numerous free parameters, deep net-
works seem to learn faster (better recognition rates after fewer
epochs) than shallow ones.

4.2 Experiments on NORB

NORB contains stereo images of 3D objects. Hence there are
two maps on the input layer. Rotation, scaling, shearing and

elastic distortions seem to have a negative impact on gener-
alization. These deformations improve recognition rates for
digits that are intrinsically 2D [Ciresan et al., 2010], but seem
inadequate for 3D objects.

Initial experiments on NORB show that unlike with
MNIST where we use deformations, the CNN needs only 3
to 6 epochs to reach zero validation error. This allows us to
quickly run numerous repetitive experiments with huge net-
works with hundreds of maps per layer. We decided to use
a CNN with five hidden layers: layer1, a convolutional layer
with 300 maps, kernel size 6× 6 and skipping factors 1× 1;
layer2, a max-pooling layer over a 2 × 2 region; layer3, a
convolutional layer with 500 maps, kernel size 4 × 4, skip-
ping factors 0 × 0; layer4, a max-pooling layer over a 4 × 4
region; layer5, a fully connected layer with 500 neurons. The
learning rate is initialized by 0.001 and multiplied by 0.95
after every epoch.

Table 2 summarizes the results of four different experi-
ments by switching on/off translation as well as the fixed im-
age processing layer. We report the average error rate as well
as the standard deviation of N independent runs with identi-
cal architectures but different weight initializations. For the
first experiment without translation and no image processing
(IP), an average test error rate of 7.86% is obtained. With
additional translations of at most 5%, the average error rate
drops to 4.71%, contradicting the common belief that CNNs
are translation invariant. These results are on par or better
than others in the literature: 5.90% error rate for a combi-
nation of CNNs and SVMs [LeCun et al., 2004] and 5.20%
error rate for restricted Boltzman machines [Nair and Hinton,
2009].

Table 2: Average error rates and standard deviations of N runs
for a five hidden layer CNN on the NORB test set (see text
for details).

trans. [%] IP TfbV [%] runs time/epoch [s]
0 no 7.86 ± 0.55 50 1141
5 no 4.71 ± 0.57 50 1563
0 yes 3.94 ± 0.48 50 1658
5 yes 2.53 ± 0.40 100 2080

The best previously published result on NORB (2.87%)
was obtained by a hierarchical neural network which to every
convolutional layer provides a subsampled version plus edge
information of the original image [Uetz and Behnke, 2009].
This motivates us to implement a pre-processing layer with
fixed filters. We try simple edge masks (Sobel, Scharr), but
find that a contrast-extraction layer [Fukushima, 2003] real-
ized by mexican hat shaped filters of size 21× 21 works best.
We use two filters, one with a concentric on-center receptive
field and one with a concentric off-center receptive field.

The first filter extracts positive contrast in brightness,
whereas the latter extracts negative contrast. Each image
from the original NORB is filtered, consequently the input
of the CNN has six maps, the original image plus the positive
and negative contrast for each of the two stereo channels. Us-
ing such a pre-processing layer results in lower average error
rates, 3.94% without translation and 2.53% with translation.

1240



This result improves the previous state of the art on NORB
[Uetz and Behnke, 2009].

Experience with other image datasets tells us that NORB
is unusual. The training set has only five instances per class.
The resulting poor training set variability makes the nets learn
quickly but generalize badly. NORB is the only dataset that
profits from a fixed pre-processing layer in a substantial way.
For MNIST and CIFAR10 such pre-processing has little or
no effect. It is also worth noting that NORB’s standard error
rate deviation is bigger than CIFAR10’s (see Tables 2 and
3). Identical nets with different initializations do not pro-
duce very consistent results. The best net had an error rate
of 1.72%, the worst 3.69%.

4.3 Experiments on CIFAR 10

CIFAR10 is a collection of natural color images of 32x32
pixels. It contains 10 classes, each of them with 5000 sam-
ples in the training set and 1000 in the test set. The images
greatly vary inside each class. They are not necessarily cen-
tered, may contain only parts of the object, and have varying
backgrounds. All of this makes CIFAR10 the hardest prob-
lem addressed in this paper. The CNN has three maps, one
for each color channel (RGB). The CIFAR10 images are rel-
atively small in comparison to NORB’s, and force us to use
small kernels. The tested CNNs differ only in the number of
maps per convolutional and max-pooling layer. All have eight
hidden layers: layer1, a convolutional layer with 3×3 kernels
and skipping factor of 0; layer2, a max-pooling layer over a
3× 3 region; layer3, a convolutional layer with 3× 3 kernels
and skipping factors of 0 × 0; layer4, a max-pooling over a
2× 2 region; layer5, a convolutional layer with 3× 3 kernels
and a skipping factors of 0 × 0; layer6, a max pooling layer
over a 2 × 2 region; layer7, a fully connected layer with 300
neurons; layer8, a fully connected layer with 100 neurons.

Like for MNIST, the learning rate is initialized by 0.001
and multiplied by 0.993 after every epoch. Results in Table 3
show that without translation the error rate does not drop be-
low 28%; adding edge information does not help at all. Trans-
lations have a very positive effect, decreasing the error rate to
almost 20%. Contrast extraction filters are better than the So-
bel/Scharr filters but still worse than no pre-processing layer
at all. Despite some CNN-inherent translation invariance, ad-
ditional training image translations cause better generaliza-
tion; additional image processing proved useless though.

To see if bigger nets are better, we increase the number of
maps per layer from 100 to 200, 300 and 400, respectively
(last three rows in Tab. 3). Training time increases exponen-
tially, but the test error decreases, reaching a minimum for
nets with 300 maps per layer. Our 19.51% error rate is bet-
ter than the previous state of the art for this dataset, 20.40%
[Coates et al., 2010] and 25.50% [Yu and Zhang, 2010]. Un-
like [Coates et al., 2010], however, we use the original images
without any particular input normalization. Note that the er-
ror rate standard deviations are smaller than those obtained
on NORB, that is, different initializations yield consistent re-
sults.

Table 3: Average error rates and standard deviations for N
runs of an eight hidden layer CNN on the CIFAR10 test set
(see text for details). The first five nets have 100 maps per
convolutional and max-pooling layer, whereas the sixth, sev-
enth and eighth have 200, 300 and 400 maps per hidden layer,
respectively. IP - image processing layer: edge - 3× 3 Sobel
and Scharr filters; hat - 13× 13 positive and negative contrast
extraction filters.

trans. [%] IP TfbV [%] runs time/epoch [s]
0; 100M no 28.87 ± 0.37 11 93
0; 100M edge 29.11 ± 0.36 15 104
5; 100M no 20.26 ± 0.21 11 111
5; 100M edge 21.87 ± 0.57 5 120
5; 100M hat 21.44 ± 0.44 4 136
5; 200M no 19.90 ± 0.16 5 248
5; 300M no 19.51 ± 0.18 5 532
5; 400M no 19.54 ± 0.16 5 875

4.4 Speedup factor of GPU code

The GPU code scales well with network size. For small nets
the speedup is small (but still over 10) since they fit better
inside the CPU cache, and GPU resources are underutilized.
For huge nets (ex: Table 2) the GPU implementation is more
than 60 times faster than a compiler-optimized CPU version.
Given the flexibility of our GPU version, this is a significant
speedup. One epoch takes 35 GPU minutes but more than 35
CPU hours.

5 Conclusion

We presented high-performance GPU-based CNN variants
trained by on-line gradient descent. Principal advantages in-
clude state-of-the-art generalization capabilities, great flexi-
bility and speed. All structural CNN parameters such as in-
put image size, number of hidden layers, number of maps
per layer, kernel sizes, skipping factors and connection ta-
bles are adaptable to any particular application. We ap-
plied our networks to benchmark datasets for digit recogni-
tion (MNIST), 3D object recognition (NORB), and natural
images (CIFAR10). On MNIST the best network achieved
a recognition test error rate of 0.35%, on NORB 2.53% and
on CIFAR10 19.51%. Our results are raising the bars for all
three benchmarks. Currently the particular CNN types dis-
cussed in this paper seem to be the best adaptive image rec-
ognizers, provided there is a labeled dataset of sufficient size.
No unsupervised pretraining is required. Good results require
big and deep but sparsely connected CNNs, computationally
prohibitive on CPUs, but feasible on current GPUs, where
our implementation is 10 to 60 times faster than a compiler-
optimized CPU version.

Acknowledgment

This work was partially funded by the Swiss Commission for
Technology and Innovation (CTI), Project n. 9688.1 IFF: In-
telligent Fill in Form.

1241



References

[Behnke, 2003] Sven Behnke. Hierarchical Neural Net-
works for Image Interpretation, volume 2766 of Lecture
Notes in Computer Science. Springer, 2003.

[Boureau et al., 2010] Y-Lan Boureau, Jean Ponce, and
Yann LeCun. A Theoretical Analysis of Feature Pooling in
Visual Recognition. In International Conference on Ma-
chine Learning, 2010.

[Chellapilla et al., 2006] Kumar Chellapilla, Sidd Puri, and
Patrice Simard. High performance convolutional neural
networks for document processing. In International Work-
shop on Frontiers in Handwriting Recognition, 2006.

[Ciresan et al., 2010] Dan C. Ciresan, Ueli Meier, Luca M.
Gambardella, and Jürgen Schmidhuber. Deep big simple
neural nets for handwritten digit recognition. Neural Com-
putation, 22(12):3207–3220, 2010.

[Coates et al., 2010] Adam Coates, Honglak Lee, and An-
drew Ng. An analysis of single-layer networks in unsuper-
vised feature learning. In Advances in Neural Information
Processing Systems, 2010.

[Fukushima, 1980] Kunihiko Fukushima. Neocognitron: A
self-organizing neural network for a mechanism of pattern
recognition unaffected by shift in position. Biological Cy-
bernetics, 36(4):193–202, 1980.

[Fukushima, 2003] Kunihiko Fukushima. Neocognitron for
handwritten digit recognition. Neurocomputing, 51:161–
180, 2003.

[Hoyer and Hyvärinen, 2000] Patrik O. Hoyer and Aapo
Hyvärinen. Independent component analysis applied to
feature extraction from colour and stero images. Network:
Computation in Neural Systems, 11(3):191–210, 2000.

[Jarrett et al., 2009] Kevin Jarrett, Koray Kavukcuoglu,
Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In Proc.
International Conference on Computer Vision, 2009.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Master’s thesis, Com-
puter Science Department, University of Toronto, 2009.

[LeCun et al., 1998] Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
November 1998.

[LeCun et al., 2004] Yann LeCun, Fu-Jie Huang, and Leon
Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In Proc. of Computer
Vision and Pattern Recognition Conference, 2004.

[Mutch and Lowe, 2008] Jim Mutch and David G. Lowe.
Object class recognition and localization using sparse fea-
tures with limited receptive fields. Int. J. Comput. Vision,
56(6):503–511, 2008.

[Nair and Hinton, 2009] Vinod Nair and Geoffrey E. Hinton.
3d object recognition with deep belief nets. In Advances
in Neural Information Processing Systems, 2009.

[Olshausen and Field, 1997] Bruno A. Olshausen and
David J. Field. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision Research,
37(23):3311–3325, December 1997.

[Pinto et al., 2009] Nicolas Pinto, David Doukhan, James J.
DiCarlo, and David D Cox. A high-throughput screen-
ing approach to discovering good forms of biologically in-
spired visual representation. PLoS computational biology,
5(11):e1000579, November 2009.

[Riesenhuber and Poggio, 1999] Maximiliam Riesenhuber
and Tomaso Poggio. Hierarchical models of object
recognition in cortex. Nat. Neurosci., 2(11):1019–1025,
1999.

[Scherer et al., 2010] Dominik Scherer, Adreas Müller, and
Sven Behnke. Evaluation of pooling operations in convo-
lutional architectures for object recognition. In Interna-
tional Conference on Artificial Neural Networks, 2010.

[Schmidhuber et al., 1996] J. Schmidhuber, M. Eldracher,
and B. Foltin. Semilinear predictability minimization pro-
duces well-known feature detectors. Neural Computation,
8(4):773–786, 1996.

[Serre et al., 2007] Thomas Serre, Lior Wolf, and Tomaso
Poggio. Object recognition with features inspired by vi-
sual cortex. In Proc. of Computer Vision and Pattern
Recognition Conference, 2007.

[Simard et al., 2003] P.Y. Simard, D. Steinkraus, and J.C.
Platt. Best practices for convolutional neural networks ap-
plied to visual document analysis. In Seventh International
Conference on Document Analysis and Recognition, 2003.

[Strigl et al., 2010] Daniel Strigl, Klaus Kofler, and Stefan
Podlipnig. Performance and scalability of GPU-based con-
volutional neural networks. In 18th Euromicro Conference
on Parallel, Distributed, and Network-Based Processing,
2010.

[Uetz and Behnke, 2009] Rafael Uetz and Sven Behnke.
Large-scale object recognition with CUDA-accelerated hi-
erarchical neural networks. In IEEE International Con-
ference on Intelligent Computing and Intelligent Systems
(ICIS), 2009.

[Wiesel and Hubel, 1959] D. H. Wiesel and T. N. Hubel. Re-
ceptive fields of single neurones in the cat’s striate cortex.
J. Physiol., 148:574–591, 1959.

[Yu and Zhang, 2010] Kai Yu and Tong Zhang. Improved
local coordinate coding using local tangents. In Proceed-
ings of the International Conference on Machine Learn-
ing, 2010.

1242




