
Solving Peg Solitaire with Bidirectional BFIDA*

Joseph K. Barker and Richard E Korf
{jbarker,korf}@cs.ucla.edu

Abstract

We present a novel approach to bidirectional breadth-first
IDA* (BFIDA*) and demonstrate its effectiveness in the do-
main of peg solitaire, a simple puzzle. Our approach improves
upon unidirectional BFIDA* by usually avoiding the last it-
eration of search entirely, greatly speeding up search. In ad-
dition, we provide a number of improvements specific to peg
solitaire. We have improved duplicate-detection in the context
of BFIDA*. We have strengthened the heuristic used in the
previous state-of-the-art solver. Finally, we use bidirectional
search frontiers to provide a stronger technique for pruning
unsolvable states. The combination of these approaches al-
lows us to improve over the previous state-of-the-art, often
by a two-orders-of-magnitude reduction in search time.

Introduction

Peg Solitaire is a simple one-player puzzle. It is played on a
board which has a number of holes, some of which are occu-
pied by pegs. Any peg can jump over an adjacent peg to land
in an empty hole, and the jumped-over peg is removed from
the board. The objective of the game is to make a sequence
of jumps that leave the board in a specified goal configura-
tion. While not required, the initial position generally has a
single empty hole and the goal board has a single peg re-
maining, often left in the initially-empty hole.

While peg solitaire can be played on a number of different
board types, we restrict ourselves to games played on a rect-
angular grid. On these, pegs can jump vertically or horizon-
tally, but not diagonally. Figure 1 shows solvable opening
states on the three primary boards studied in this paper.

The most basic question we can ask is whether there exists
any sequence of jumps that transforms the initial state into
the goal state. In this paper, however, we address the opti-
mization problem, where we treat consecutive jumps by the
same peg as a single move and try to find the fewest num-
ber of moves required to generate the goal state. To disam-
biguate, we will use the word “move” to apply exclusively
to one or more single jumps by the same peg.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Examples of solvable initial states on the English
(top left), French (top right), and Diamond(5) boards

Figure 2: Pagoda values for the French board

Background
Peg Solitaire Constraints
The problem of playing peg solitaire has been addressed in
a number of books. In particular (Beasley 1985) describes
techniques used to prove certain board states as unsolvable.
We use three of these in our work: position classes, pagoda
functions (or resource counts), and peg types.

A complete discussion of position classes is beyond the
scope of this paper. For our purposes, it suffices to say that
every board configuration can be easily classified as belong-
ing to a particular position class. If the initial and goal states
are of different classes, an instance can be discarded as un-
solvable without performing any search.

A pagoda function can be used to prune certain states as
unsolvable. To define one, we assign each hole on the board
a number subject to the following constraints: for any three
horizontally- or vertically-adjacent holes with values x, y,
and z we have that x ≤ y + z and z ≤ y + x. The pagoda

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

420



value of a board state is given by the sum of the values of ev-
ery occupied hole. Since a single jump removes pegs from
two adjacent holes and places a peg in a third consecutive
hole, a board’s pagoda value can only stay the same or de-
crease after a jump is made. Thus, if we reach a state whose
pagoda value is less than that of the goal, we know the state
is a dead end and we cannot reach the goal. Figure 2 gives
values for an effective pagoda function on the French board.

We classify all pegs on a board into four distinct types. A
peg’s type is defined by the parity of the row and column that
it appears in, so a 2×2 square would contain one peg of each
type. Since a jump moves a peg either two holes horizontally
or vertically, the type of a peg never changes during a game.
Thus, the number of pegs of a given type never increases and
in games where the goal state has one peg, the count of that
peg type can never reach zero. Also note that pegs can only
jump other pegs of certain types. In particular, pegs types
are divided into two classes: pegs that have both row and
column of the same parity, and pegs that do not. Pegs in one
class can only jump pegs in the opposite class.

BFIDA*
Breadth-First Iterative-Deepening A* (BFIDA*) is a well-
known search algorithm (Zhou and Hansen 2006) based on
Breadth-First Heuristic Search (BFHS). The algorithm per-
forms a series of successively larger breadth-first searches.
A cutoff is maintained on each node’s f -cost, the sum of
its cost so far (its g-cost) and a heuristic estimate of the re-
maining cost to the goal (its h-cost). Any node whose f -cost
exceeds the current cutoff is pruned. Repeated iterations of
breadth-first search are done with increasingly large f cut-
offs until a solution is found of minimal cost. In general,
each iteration of search will do significantly more work than
the preceding, so the majority of time is spent on the final it-
eration. To avoid ambiguity, when we refer to an “iteration”
in the context of BFIDA* this will refer exclusively to an
entire breadth-first search with a given cost cutoff.

There are two properties of the peg solitaire search space
that make BFIDA* an appropriate choice of algorithm. First,
the search space on bigger boards can be quite large, such
that solving instances in main memory is not practical with
more traditional algorithms such as A*. As a breadth-first
algorithm, however, BFIDA* is very amenable to disk-based
techniques such as delayed-duplicate detection (Korf 2008),
and can thus address larger problem instances.

In addition, peg solitaire has a very large number of du-
plicate states that occur through different move sequences.
These duplicates will tend to occur at the same level of the
search space and can thus be easily pruned in a breadth-first
search by examining only the most-recently generated level.
A depth-first approach such as DFIDA* (Korf 1985), by con-
trast, would not be able to detect these duplicates and so
would perform considerable redundant work.

BFIDA* has one limitation relevant to our work, however,
which is that it does not strongly benefit from tie break-
ing (Zhou and Hansen 2006). In a depth-first algorithm like
DFIDA*, the last iteration of search can be extremely small,
since the algorithm can use intelligent node ordering to go
directly to the goal node. Since BFIDA* is breadth-first,

however, it cannot generate the goal until every node at the
immediately preceding level has been generated. All optimal
solutions occur at the same level, so generating all remain-
ing solutions is just a matter of expanding the remainder of
the penultimate level, which will be small relative to the size
of the overall iteration. Thus, finding all optimal solutions is
not significantly harder than finding the first solution.

We note one important exception, which can occur in do-
mains with weaker heuristics like peg solitaire. In these do-
mains, the heuristic may not prune many nodes near the goal
state, allowing BFIDA* to find solutions on an iteration be-
fore the last. Since the cost of these solutions exceeds the
current cutoff, search cannot terminate immediately. How-
ever, BFIDA* can terminate as soon as it starts an itera-
tion with a cutoff equal to that of the lowest-cost solution so
far; this effectively prunes the last iteration of search. Robert
Holte notes a similar property of DFIDA* in (Holte 2010).

Previous Work
Most of the previous work on computational search in peg
solitaire has been done by George Bell, using both brute-
force and heuristic techniques. (Bell 2007) discusses appli-
cation of heuristic-search techniques (specifically BFIDA*)
to peg solitaire. It focuses primarily on a variant in which di-
agonal moves are allowed, but contains discussion of search
on orthogonal peg solitaire as well. The main result in or-
thogonal solitaire is a heuristic that improves over brute-
force search on the English Board. On the two other boards
considered, the French and Diamond(5), this heuristic pro-
duces little improvement over a simple brute-force search.

(Bell 2012) provides a comprehensive catalog of solutions
for several popular board shapes, including those studied in
our paper. The results on these boards were generated using
bidirectional brute-force search. In orthogonal peg solitaire,
the brute-force search algorithm used to generate these so-
lutions can generally be considered the state of the art. The
one exception is on the English board, where a heuristic ap-
proach provides modest improvements.

We have found one reference to previous work on
bidirectional BFHS, used in the context of symbolic
search (Richards 2004). This work is not formally published
and we have been unable to acquire a copy, so our under-
standing comes from papers referencing it (Jensen et al.
2006). In this approach, simultaneous BFHS searches are
done forward from the start state and backward from the goal
state one level at a time, using the same cutoff for each. If the
backward and forward levels intersect, an optimal solution is
found with cost equal to the current search cutoff.

Expanding Levels By Jumps, Not Moves
The algorithm described in (Bell 2007) is a straightforward
implementation of BFIDA* with a custom heuristic for Peg
Solitaire. An important consideration is that moves are com-
pound actions; that is to say, any move by a single peg can
be extended to a longer move from the same initial state by
appending another jump by the same peg.

As BFIDA* uses a breadth-first search, this raises the
question of what constitutes a “level” in breadth-first search.

421



Bell considers a level as consisting of all nodes that can
be reached by one move from some node on the preceding
level. That is, he generates the next level of search by look-
ing at every node on the current level, finding all moves that
can be made on that board, and placing the nodes that result
from applying those moves on the succeeding level.

This approach follows the traditional model of BFIDA*,
where all nodes on a level have the same g value. In peg soli-
taire, however, it presents some problems. Node expansion
is complicated: generating all successors to a node involves
a secondary search of legal jump sequences, adding com-
plexity. In addition, doing a secondary search of moves on
different states may result in duplicate intermediate states.
Detecting and pruning these duplicates is non-trivial.

A more fundamental problem with this approach is that,
since moves of different lengths remove different numbers
of pegs, not all nodes on the same level of search have the
same number of pegs. This means that duplicate states ap-
pear at different levels of search. We must then either store
multiple levels of the problem space for duplicate detection,
or pay the cost of additional, duplicate work.

An alternative approach—the one used in our solver—is
to consider each level as being all nodes that are reachable by
performing a single jump from some node on the preceding
level. Under this strategy, generation of children becomes
trivial and quick: the successors to a node on the next level
are simply all nodes that can be reached by a single jump on
the board. This, combined with the fact that all nodes at the
same depth now have the same number of pegs, means that
we are able to easily detect all duplicates in a search.

The downside to this approach is that it involves addi-
tional bookkeeping complexity. Since not all nodes on the
same level have been generated by the same number of
moves, we need to store with each node its associated g cost.
In addition, we need to store with each node the identity of
the last peg moved; this allows us to determine whether a
jump made from that node is a continuation of the last move
or starts an entirely new move. These two additional fields
impose a small additional space overhead. Finally, care must
be taken when deciding when to prune a node, since it may
be possible to extend the move that generated a current node
and thereby reduce its h-value. We cannot prune a node until
the move that generated it is complete.

At the cost of some additional bookkeeping space, how-
ever, we have now guaranteed that all duplicate nodes will
occur at the same level of search. This means that duplicate
detection requires storing only the current level of search,
and we do not need to waste additional space or time look-
ing for duplicates in previous search levels.

Improved Heuristics
We have developed an improved heuristic for peg solitaire.
Importantly for our algorithm, it is a consistent heuristic.
Our heuristic uses three different components based on prop-
erties of the board: the number of occupied corner holes, the
number of pegs of certain types on the board, and the num-
ber of occupied Merson regions (described later). We call to
these components hc(n), ht(n), and hm(n), respectively.

Figure 3: Corners and Merson regions on the Wiegleb board.

Our first component, hc(n), is based on corners, which are
holes that cannot be jumped over by a peg. Figure 3 labels
corners using a “C” on a large board known as the Wiegleb.
hc(n) is simply the count of corners that are occupied by a
peg in the current state but not the goal. Each such corner
must be vacated to find a solution. Since pegs in those holes
cannot be captured, they can only be removed from their
corner hole with a move starting at that hole. Thus, hc(n) is
a lower bound on the optimal solution cost. Note that hc(n)
counts the number of moves required to remove pegs from
certain holes, not to remove them from the board entirely.

For every peg type, there is some number of pegs that
must be removed from the current board to reach the goal.
In addition, there is a maximum number of pegs of that type
capturable in a single move. For example, consider the type
of peg that can occupy corners on the English board: a max-
imum of four such pegs can be removed by a single move.
Thus, there is a minimum number of moves required to re-
duce the count of each peg type to its count in the goal state.
Our second heuristic component, ht(n), is based on this
property. In isolation, ht(n) could be defined as the max-
imum of the number of moves required to remove excess
pegs of each type. However, moves that vacate corner holes
will capture other pegs. To ensure that ht(n) is independent
of hc(n), we calculate ht(n) based only on peg types that
cannot be captured by moves originating in a corner.

The third component we call hm(n), and relies on Mer-
son regions, contiguous regions of the board with the prop-
erty that, if all holes are occupied, pegs in the region can
only be removed by moves that originate within that region.
Figure 3 shows nine Merson regions on the Wiegleb board
as gray rectangles. hm(n) simply defines Merson regions on
the board (excluding corners) and gives the count of regions
filled in the current state but not the goal. Our implementa-
tion simply defines a static set of non-overlapping Merson
regions, so it would be possible to improve upon this tech-
nique using, for example, dynamically-selected regions.

ht(n) and hm(n) cannot be combined, as a move va-
cating a Merson region might take pegs of any sort. A
move affecting hc(n), meanwhile, will not affect ht(n) or
hm(n). Thus, our complete heuristic function is defined as
hc(n) +max(ht(n), hm(n)).

This heuristic improves on Bell’s in two ways. Bell de-
fines one heuristic that accounts for occupied corners and

422



the minimum number of moves required to remove pegs
of certain types. However, he appears to not have extended
his heuristic to account for boards where different corners
are occupied by pegs of different types. This means that on
boards like the French and Diamond(5), where two differ-
ent peg types can occupy corners, his heuristic would under-
count the occupied corners and moves required to remove
excess pegs. In addition, he defined a separate heuristic
based purely on Merson regions but uses these two heuristics
independently, while our heuristic takes the max of these two
approaches. This is primarily helpful on the larger Wiegleb
board, where Merson regions make a noticeable difference.

An important property of our heuristic is that a move can
reduce its valuation of a state by at most one. A move can af-
fect our heuristic in three different ways: it can vacate a sin-
gle corner, it can reduce by one the number of moves needed
to remove excess pegs of some type, or it can vacate a sin-
gle Merson region. Each of these possibilities reduces the
heuristic value by one. The first possibility cannot happen in
combination with the second and third and we take the max
of the second and third values. Thus, the heuristic value can
decrease by at most one after any move and our heuristic
function is monotone and consistent, not just admissible.

Bi-Directional BFIDA*
Our search algorithm is a bidirectional form of BFIDA*. It
performs two independent BFIDA* searches, one forward
from the start and one backward from the goal (in the case of
multiple goal states, the backward search is seeded with each
possible goal rather than a single root node). Each search
has an independent cutoff. After a complete breadth-first it-
eration of BFIDA* is done in one direction, the cutoff for
that direction is increased. To keep work in each direction
balanced, we choose whether to perform a forward or back-
ward iteration next based on which direction had the fewest
number of nodes expanded on the previous iteration (this is
very similar to Pohl’s cardinality principle (Pohl 1971)).

As we do an iteration of BFIDA* with a given cutoff, we
maintain a frontier of all nodes which have been expanded
but had a child pruned for exceeding that cutoff. Coming
from the opposite direction, we cannot reach the goal (or
start) state without passing through this frontier. The reason
we keep all nodes expanded—rather than those generated
but pruned—is that we want to guarantee that we have the
optimal path to all nodes on our frontier. We can guarantee
this property since we are using a consistent heuristic. Note
that any node pruned for violating pagoda or peg type con-
straints need not be stored on the frontier, as such a node
cannot possibly be part of a solution.

The frontier is stored on a level-by-level basis: each level
of the frontier contains only nodes with the same number of
pegs. During search, we check each node selected for ex-
pansion against the opposing frontier. If the frontiers inter-
sect, we have a candidate solution and we keep track of the
lowest-cost solution found. Finding intersections between
the frontiers can be efficiently done, even on disk. To elimi-
nate duplicate states on disk using delayed-duplicate detec-
tion we efficiently sort each breadth-first layer on disk and

then do a linear scan to detect duplicates. Frontiers are sim-
ilarly kept as sorted files. Thus, when expanding a layer we
are traversing a sorted file. To find intersections with the op-
posing frontier we simply traverse the appropriate file in par-
allel, adding just the cost of one additional file read.

In addition, we note that we need not explore the children
of any node that has intersected the opposing frontier. Since
our heuristic is consistent and we have expanded the same
node from both directions, we must have the optimal path
from the start to the goal through this node. Thus, we can-
not improve upon this solution by exploring further children
beneath it. Note that this does not guarantee that we have
found the optimal overall solution, though.

The fact that frontier intersections provide us with candi-
date solutions leads to one of the main benefits of our ap-
proach, and the most important contribution of our paper. If
we are searching for a single optimal solution we can stop
searching once we prove that the best solution found so far is
in fact optimal. Any time we find a frontier intersection we
have a candidate solution and, since this is the intersection
of two searches coming from opposite directions, its cost
will likely exceed the current f -cutoff. In all of our exper-
iments, we found the optimal solution on an iteration with
a smaller-than-optimal cost cutoff. As soon as we start an
iteration whose cutoff is the cost of the best solution found
so far, we can stop as that solution has been proved optimal.

In unidirectional BFIDA*, as discussed earlier, an optimal
solution is generally only found near the very end of an iter-
ation with the optimal cost cutoff. The overall effect of our
technique, then, is to eliminate the last iteration of BFIDA*
entirely, at the cost of some number of iterations of back-
ward search. In general, BFIDA* is effective because each
iteration of search is much larger than the last, so remov-
ing the last iteration should significantly reduce the length
of time spent searching. Our results in Experiments demon-
strate that this is indeed the case.

Propagation Of Pagoda And Peg-Type
Constraints

We can leverage the fact that our bidirectional search fron-
tiers do not pass each other to improve our ability to prune
unsolvable states. As mentioned earlier, pagoda values and
counts of pegs of a certain type are properties of a game that
can never increase during play. Thus, we can prove certain
states to be unsolvable if, for example, their pagoda value
becomes less than that of the goal.

Note that, in forward search, any path from a node to the
goal must pass through the backward search frontier. Thus,
the pagoda value of the current node must be equal to at least
the minimum pagoda value of all nodes on the backward
search frontier, not just the goal node. The same is true for
peg-type constraints. In backward search, we keep track of
the minimum pagoda value and peg type counts of all nodes
added to the final frontier and we use this value to prune
unsolvable nodes during forward search. We do the converse
for nodes added to the frontier in forward search.

423



Board Start End Bell Bell BFIDA* BD-BFIDA* BD-BFIDA*, no
hole peg (2012) (2007) constraint propagation

Time Time Nodes Time Nodes Time Nodes
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

English

(3, 3) (3, 3) 91.4 46.6 † 3.0 4.07 2.9 3.90 4.0 5.55
(0, 3) (3, 3) 85.8 49.8 † 3.5 4.79 5.2 6.90 7.8 10.79
(0, 3) (0, 3) 189.0 49.3 27.6 32.83 3.2 4.41 4.5 6.44
(0, 3) (6, 3) 196.6 51.9 27.7 32.83 3.2 4.41 4.5 6.44
(3, 3) (0, 3) 171.8 9.2 7.0 9.57 0.3 0.50 0.4 0.59
(2, 3) (2, 3) 156.7 4.9 12.5 16.28 1.3 1.84 1.9 2.70
(0, 2) (3, 2) 128.3 6.8 5.0 6.78 0.3 0.38 0.3 0.38
(0, 3) (3, 3) 133.9 8.2 6.7 9.10 0.5 0.73 0.5 0.73
(1, 3) (4, 3) 376.2 8.1 5.4 7.21 1.4 1.65 1.4 1.66
(1, 3) (1, 3) 355.5 452.4 † 39.6 45.90 52.2 62.68 55.0 68.13
(2, 3) (5, 3) 132.3 80.2 † 5.0 6.78 6.4 8.78 6.3 8.93
(0, 2) (3, 5) 139.3 107.7 † 6.7 9.10 12.0 16.46 13.0 18.41
(0, 2) (0, 2) 316.0 17.5 13.3 18.06 1.9 2.73 1.9 2.74
(2, 3) (2, 0) 368.2 29.6 19.8 26.13 1.6 2.21 1.5 2.24
(0, 2) (6, 2) 314.5 17.8 13.3 18.06 1.9 2.73 1.9 2.75
(1, 3) (4, 0) 319.4 31.7 20.9 27.46 1.8 2.57 1.8 2.72
(2, 2) (2, 2) 201.0 5.0 4.0 5.54 1.4 1.98 1.4 1.98
(1, 2) (3, 3) 188.0 2.6 2.3 3.24 1.4 1.69 1.3 1.69
(1, 2) (1, 2) 218.1 43.5 16.1 21.05 1.1 1.54 1.0 1.54
(2, 2) (2, 5) 326.2 128.7 49.3 59.95 3.9 5.56 3.7 5.56
(1, 2) (4, 5) 226.8 43.2 16.1 21.05 1.1 1.54 1.0 1.54

Total: 01:17:13 00:19:53 00:05:05 00:01:45 00:01:55

French

(0, 2) (0, 4) 9,804 - 174 191.08 16 16.80 15 17.46
(0, 2) (3, 1) 5,515 - 92 100.95 7 8.11 7 8.11
(0, 2) (3, 4) 3,825 - 85 92.11 5 5.42 5 5.43
(0, 2) (6, 4) 9,908 - 173 191.08 15 16.86 16 17.49
(2, 3) (4, 0) 7,530 - 1,959 1,744.32 363 354.75 370 386.90
(2, 3) (1, 3) 4,033 - 562 521.45 107 109.43 105 109.62
(2, 3) (4, 3) 2,410 - 542 495.58 80 82.30 79 83.00
(1, 3) (2, 0) 5,666 - 384 396.32 22 25.32 23 27.13
(1, 3) (5, 3) 3,125 - 102 106.49 5 5.84 5 5.84
(1, 3) (2, 3) 2,031 - 96 100.43 5 5.40 5 5.41

Total: 14:57:27 01:09:29 00:10:25 00:10:30

Diamond(5)

(1, 3) (1, 5) 8,855 - 3,013 2,445.92 63 61.57 484 469.85
(703) -

(4, 6) (1, 5) 8,585 - 6,202 4,864.44 272 250.68 1,064 1,009.64
(1,215) -

(1, 3) (4, 2) 8,585 - 414 356.47 74 72.23 164 151.10
(1,272) -

(4, 6) (4, 2) 1,282 - 472 395.24 73 70.59 72 70.59
(1,268) -

Total: 07:35:07 02:48:21 00:08:02 00:29:44
(01:14:16)

Table 1: Timing values and numbers of nodes expanded for all solvable instances on the English, Diamond(5), and French
boards. Times of individual instances are given in seconds and node counts are given in millions.

424



Experiments
We performed our experiments on three different boards: the
English, French, and Diamond(5) boards (see figure 1). The
rows of table 1 summarize our results on the solvable in-
stances of these boards reported in (Bell 2012). The first col-
umn gives the shape of the board, the second column gives
the location of the empty hole in the start state, and the third
column gives the location of the final peg in the goal state.
Peg locations are given as row/column coordinates on the
smallest box that encloses the board, starting at (0, 0) in the
top-left corner. For example, (3, 3) is the center-most hole
on the English and French boards. All experiments were run
on a 3.33 GHz Intel Xeon with 48 GB of RAM. We find the
same minimum path length as Bell in all cases.

Bell has graciously provided us with his solver, which we
have used to regenerate his results on our machine. Recall
that these results represent the state of the art on minimal-
length peg solitaire solutions. Column 4 shows the results of
the brute-force bidirectional search algorithm used in (Bell
2012), which was previously the strongest solver on the
French and Diamond(5) boards. Note that this column has
two numbers for each instance on the Diamond(5) board.
The first gives the timing numbers of the default algorithm.
In addition, Bell has manually found a tighter constraint on
pagoda values on this board. This tighter constraint is of the
form found by our propagation technique. The number in
parentheses is for the solver with this constraint enabled.

Column 5 shows the results of the BFIDA* algorithm
of (Bell 2007) on the English board, where it is most ef-
fective. We have not generated results for the other boards,
but according to Bell they do not significantly improve on
brute-force search. His solver only performs a single itera-
tion of BFIDA* at a time, so the numbers given are for the
final iteration with the optimal cost cutoff. A complete run
would require slightly more time for the initial iterations.

Columns 6 and 7 give the time and numbers of nodes ex-
panded with our implementation of unidirectional BFIDA*.
As mentioned earlier, with a sufficiently weak heuristic, uni-
directional BFIDA* can find an optimal solution on an iter-
ation with a cutoff less than the optimal solution cost. And,
indeed, this occurs in five instances. These instances are
marked with a dagger. Ignoring these cases, our BFIDA*
solver compares favorably to Bell’s and generates compara-
ble or slightly faster results in most cases.

Our heuristic significantly improves upon those given
in (Bell 2007) on the French and Diamond(5) boards. While
the previous heuristics barely improve upon brute-force
search, we have managed to easily solve all of these in-
stances using simple unidirectional BFIDA*. In the case of
the French board, our unidirectional heuristic search is of-
ten over an order-of-magnitude faster than the previously-
optimal solver. On the Diamond(5) board, our solver does
not benefit from Bell’s manually-derived tightened con-
straints, but still comfortably beats his default solver.

Columns 8 and 9 give the time and nodes expanded with
our bidirectional BFIDA* algorithm. These are our strongest
results. In all cases, our solver was able to find an optimal
solution on an iteration before the last. Our solver is sig-
nificantly faster than the previous state-of-the-art, generally

beating it by one or two orders of magnitude. In the most ex-
treme example, the third problem of the French board, our
solver is able to reduce the solution time from over an hour
down to five seconds of runtime. While some of this im-
provement is due to the improved heuristic, our bidirectional
solver is itself able to significantly improve over our unidi-
rectional approach, often by an order of magnitude.

As noted previously, our unidirectional solver occasion-
ally finds optimal solutions before the last iteration. Signifi-
cantly, unidirectional search was only able to outperform our
bidirectional approach in these cases, due to the overhead in
the latter of additional iterations of backward search.

Columns 10 and 11 give the time and nodes expanded
with bidirectional BFIDA*, but without propagation of
pagoda and peg-type constraints. That is, we only place con-
straints on nodes using the pagoda and peg-type values of the
start and goal states, not values calculated from the search
frontiers. In most problem instances this technique does not
affect search much, producing only modest reductions in
node counts at the cost of slightly more expensive node ex-
pansions. On three of the Diamond(5) instances, however,
this technique was able to find the tighter constraints that
Bell enforces manually. This dramatically speeds up run-
time. Since the technique usually has little negative impact
and has the capacity to dramatically improve performance,
we believe that it should be used in general.

Finally, we solved all instances of the Wiegleb board, pic-
tured in figure 3. Bell’s solver took three months to solve all
35 solvable instances on this board. Our solver, meanwhile,
took just a week and a half. We have benefited strongly from
disk-based techniques on this problem: on larger instances
our solver uses up to a terabyte of disk storage.

Conclusions And Future Work
The primary contribution of our paper is a novel approach
to performing bidirectional BFIDA*. This approach, which
generalizes beyond the domain of peg solitaire to other do-
mains with reversible operators and heuristics, has the useful
property that it can find single optimal solutions without per-
forming an iteration of search with a cutoff equal to the op-
timal solution cost. In our experiments, this technique gen-
erally provides significant performance improvements over
a more conventional unidirectional search.

In addition, we have provided improvements to the previ-
ous state-of-the-art techniques for solving peg solitaire. We
have devised a new approach for searching by levels which
allows us to catch all duplicate states. We have improved
over existing heuristics. Finally, we make use of the bidi-
rectionality of our search to to automatically derive tighter
constraints on search. The combination of these techniques
allows us to solve problem instances significantly faster than
the state-of-the-art, often by up to two orders of magnitude.

An improved implementation of DDD for disk-based
search works by partitioning each layer into disjoint hash ta-
bles small enough to fit into memory (Korf 2008), avoiding
the overhead of sorting. We have implemented this approach
and tentative results indicate significant speedups (on the or-
der of 25% on some larger problems). However, we were not
able to complete these experiments in time for publication.

425



References
Beasley, J. 1985. The Ins And Outs Of Peg Solitaire. Oxford
University Press.
Bell, G. I. 2007. Diagonal peg solitaire. Integers: Electronic
Journal Of Combinatorial Number Theory 7(G1):20.
Bell, G. I. 2012. George bell’s peg solitaire page. http:
//home.comcast.net/∼gibell/pegsolitaire.
Holte, R. C. 2010. Common misconceptions concerning
heuristic search. In Proceedings of the Third Annual Sym-
posium on Combinatorial Search, 46–51.
Jensen, R. M.; Hansen, E. A.; Richards, S.; and Zhou, R.
2006. Memory-efficient symbolic heuristic search. In Inter-
national Conference on Automated Planning and Schedul-
ing, 304–313.
Korf, R. E. 1985. Depth-first iterative-deepening: an optimal
admissible tree search. Artificial Intelligence 27:97–109.
Korf, R. E. 2008. Linear-time disk-based implicit graph
search. J. ACM 55:26:1–26:40.
Pohl, I. 1971. Bi-directional search. Machine Intelligence
6:127–140.
Richards, S. K. 2004. Symbolic bidirectional breadth-first
heuristic search. Master’s thesis, Mississippi State Univer-
sity.
Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artificial Intelligence 170(45):385 – 408.

426




