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Introduction & Motivation:

The pressing need of real-world problems for implementable and practically feasible solutions 
has increased the significance of good heuristic functions in modern times. It has been realized 
that many important planning applications are so challenging that obtaining an optimal solution 
is not practical. Hence, in most of the cases, the main approach to such problems is to try to 
obtain solutions in reasonable time and at the cost of optimality, if needed, but keeping in mind 
that these solutions are not far from optimal. Many of the current real-world problems can be 
transformed into path-finding problems. To reduce the size of search space, it is critical to use 
effective heuristics. 

A popular approach to creating heuristics for a state space is abstraction. 
One of the limitations of this approach is that it is usually memory-intensive. Moreover, since 
combinatorial problems grow exponentially, for the problems to be faced, with the computers 
of foreseeable future, even the best heuristics created by similar approaches will be too weak to 
enable  arbitrary  instances  to  be  solved  reasonably  quickly.  One  of  the  approaches  to  the 
automatic creation of heuristics that gets over these limitations is to apply machine learning to 
learn heuristic functions. 

Many studies have been carried out  on the popular sliding-tile  puzzles, 
which turn out to be complex enough to highlight the most relevant problems. The above idea 
of automatic creation of heuristics has been applied with great success to the 15-puzzle and  
other state spaces of similar size (see Samadi, Felner, and Schaeffer [2] and Ernandes and Gori 
[3] ), but could not be applied to larger spaces, like the 24-puzzle, because of the excessive time 
it would take to create a sufficiently large training set containing a sufficiently broad range of 
possible distances to goal. 

Ernandes  and  Gori  [3]  proposed  a  different  way  of  extending  the  machine 
learning approach to scale to arbitrarily large problems(but never implemented it) called the  
“bootstrap learning of heurisitic functions”(or bootstrapping).  

Objective:

In this project, we plan to use machine learning to create effective heuristics for IDA* search 
algorithm to solve single instances of sliding-tile puzzle (one of the problems having large state 
space which is complex enough to highlight the most relevant problems) in reasonable time at 
the cost of optimality. We aim to test this method on the 15 puzzle and, if time permits, on the  
24 puzzle. The bootstrapping procedure that we plan to implement is supposed to solve single 
instances of problem quickly but compromising with the optimality within reasonable bounds 
by using an interleaving method to carry on the learning and solving processes in parallel.
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Methodology:

The key concept of our approach is to generate stronger heuristics starting  from weaker ones 
using a bootstrapping procedure. The main algorithms and methods to be used in the procedure 
are:

• Bootstrap algorithm : An iterative procedure that starts from a weak heuristic and a set 
of unsolved instances(which not necessarily can be solved using this weak heuristic) and 
develops  stronger heuristics  successively from the training sets  generated during the 
procedure.

• IDA* algorithm: The search algorithm used to solve problem instances in this process.
• Random walk algorithm : In case the current heuristic(during the bootstrap procedure) 

cannot solve at-least some threshold number of bootstrap instances, this algorithm is 
used to generate instances starting from goal state to create instances which are easy 
enough to be solved by the current heuristic.

• Learning algorithm :  Artificial neural networks would be used to learn heuristics using 
training  set  generated  during  the  bootstrapping  procedure.  The  admissibility  of  the 
learned heuristic is relaxed in probabilistic sense.

• Interleaving procedure : In this method, we use a fixed ratio of the time allocated to 
solving and the time allocated to learning which would help solving single problem 
instances in practically reasonable time.

Related Work:
Similar work has been carried out in the last decade in this area by Ernandes & Gori in 2004 in 
which admissibility of the heuristics was relaxed in probabilistic sense but could not be applied 
to larger state spaces because of excessive time required to create sufficiently large quality 
training set, then in 2008 Samadi, Felner, Schaeffer used multiple heuristics but reverted to 
abstraction  approach inheriting  its  limitations.  Later  in    2010,  Jabbari,  Zilles,  Holte  used 
similar bootstrapping procedure to solve problems in larger problem domains like 24 puzzle, 
rubik's cube, etc.
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