

Euclidean distance for $\mathrm{k}=7$
As observed from the residual variance curve, the dimensionality is 1 . Let the angles be $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} as mentioned in the pdf file of Part B3. As observed in the image files, the box remains at a constant height above the base of the two arms. If there was no box and the arms could move independently, the degree of freedom would have been 4 as in Part B. But since the height of the box has to be constant, we conclude that $l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2}=$ constant where $l_{1}, l_{2}, l_{3}, l_{4}$ are the length of the arms making the corresponding θ 's. Therefore taking θ_{1} to be the independent variable, θ_{2} depends on θ_{1}. Similarly, for arm2, θ_{4} depends on θ_{3}. The motion of the arms is constrained along the horizontal direction by the equation
$l_{3} \cos \theta_{3}+l_{4} \cos \theta_{4}-l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2}=$ constant $=$ width of the box as the two arms always hold the box along the midline as seen in the images. Therefore, θ_{3} depends on θ_{1}. Therefore taking θ_{1} as the independent variable, all other variable can be expressed in tterms of θ_{1} reducing the dimensionality of the problem to 1 .

