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Abstract. Given a set of images of scenes containing multiple object
categories (e.g. grass, roads, buildings) our objective is to discover these
objects in each image in an unsupervised manner, and to use this object
distribution to perform scene classification. We achieve this discovery us-
ing probabilistic Latent Semantic Analysis (pLSA), a generative model
from the statistical text literature, here applied to a bag of visual words
representation for each image. The scene classification on the object dis-
tribution is carried out by a k-nearest neighbour classifier.

We investigate the classification performance under changes in the vi-
sual vocabulary and number of latent topics learnt, and develop a novel
vocabulary using colour SIFT descriptors. Classification performance is
compared to the supervised approaches of Vogel & Schiele [19] and Oliva
& Torralba [11], and the semi-supervised approach of Fei Fei & Per-
ona [3] using their own datasets and testing protocols. In all cases the
combination of (unsupervised) pLSA followed by (supervised) nearest
neighbour classification achieves superior results. We show applications
of this method to image retrieval with relevance feedback and to scene
classification in videos.

1 Introduction

Classifying scenes (such as mountains, forests, offices) is not an easy task owing
to their variability, ambiguity, and the wide range of illumination and scale con-
ditions that may apply. Two basic strategies can be found in the literature. The
first uses low-level features such as colour, texture, power spectrum, etc. This
approaches consider the scene as an individual object [16, 17] and is normally
used to classify only a small number of scene categories (indoor versus outdoor,
city versus landscape etc...). The second strategy uses an intermediate represen-
tations before classifying scenes [3, 11, 19], and has been applied to cases where
there are a larger number of scene categories (up to 13).

In this paper we introduce a new classification algorithm based on a combina-
tion of unsupervised probabilistic Latent Semantic Analysis (pLSA) [6] followed
by a nearest neighbour classifier. The pLSA model was originally developed for
topic discovery in a text corpus, where each document is represented by its word
frequency. Here it is applied to images represented by the frequency of “visual



words”. The formation and performance of this “visual vocabulary” is investi-
gated in depth. In particular we compare sparse and dense feature descriptors
over a number of modalities (colour, texture, orientation). The approach is in-
spired in particular by three previous papers: (i) the use of pLSA on sparse
features for recognizing compact object categories (such as Caltech cars and
faces) in Sivic et al. [15]; (ii) the dense SIFT [9] features developed in Dalal and
Triggs [2] for pedestrian detection; and (iii) the semi-supervised application of
Latent Dirichlet Analysis (LDA) for scene classification in Fei Fei and Perona [3].
We have made extensions over all three of these papers both in developing new
features and in the classification algorithm. Our work is most closely related
to that of Quelhas et al. [12] who also use a combination of pLSA and super-
vised classification. However, their approach differs in using sparse features and
is applied to classify images into only three scene types.

We compare our classification performance to that of three previous meth-
ods [3, 11, 19] using the authors’ own databases. The previous works used varying
levels of supervision in training (compared to the unsupervised object discovery
developed in this paper): Fei Fei and Perona [3] requires the category of each
scene to be specified during learning (in order to discover the themes of each cat-
egory); Oliva and Torralba [11] require a manual ranking of the training images
into 6 different properties; and Vogel and Schiele [19] require manual classifi-
cation of 59582 local patches from the training images into one of 9 semantic
concepts. As will be seen, we achieve superior performance in all cases.

We briefly give an overview of the pLSA model in Section 2. Then in Sec-
tion 3 we describe the classification algorithm based on applying pLSA to images.
Section 4 describes the features used to form the visual vocabulary and the prin-
cipal parameters that are investigated. A description of datasets and a detailed
description of the experimental evaluation is given in Sections 5 and 6.

2 pLSA model

Probabilistic Latent Semantic Analysis (pLSA) is a generative model from the
statistical text literature [6]. In text analysis this is used to discover topics in a
document using the bag-of-words document representation. Here we have images
as documents and we discover topics as object categories (e.g. grass, houses), so
that an image containing instances of several objects is modelled as a mixture
of topics. The models are applied to images by using a visual analogue of a
word, formed by vector quantizing colour, texture and SIFT feature like region
descriptors (as described in Section 4). pLSA is appropriate here because it
provides the correct statistical model for clustering in the case of multiple object
categories per image. We will explain the model in terms of images, visual words
and topics.

Suppose we have a collection of images D = d1,...,dN with words from a
visual vocabulary W = w1,...,wV . One may summarize the data in a V × N co-
occurrence table of counts Nij = n(wi, dj), where n(wi, dj , ) denotes how often
the word wi occurred in an image dj . In pLSA there is also a latent variable



model for co-occurrence data which associates an unobserved class variable z ε
Z = z1,...,zZ with each observation. A joint probability model P (w, d) over V
× N is defined by the mixture:

P (w|d) =
∑

zεZ

P (w|z)P (z|d) (1)

P (w|z) are the topic specific distributions and, each image is modelled as a
mixture of topics, P (z|d). For a fuller explanation of the model refer to [5, 6, 15].

3 Classification

In training the topic specific distributions P (w|z) are learnt from the set of train-
ing images. Each training image is then represented by a Z-vector P (z|dtrain),
where Z is the number of topics learnt. Determining both P (w|z) and P (z|dtrain)
simply involves fitting the pLSA model to the entire set of training images. In
particular it is not necessary to supply the identity of the images (i.e. which
category they are in) or any region segmentation.

Classification of an unseen test image proceeds in two stages. First the doc-
ument specific mixing coefficients P (z|dtest) are computed, and then these are
used to classify the test images using a K nearest neighbour scheme. In more
detail document specific mixing coefficients P (z|dtest) are computed using the
fold-in heuristic described in [5]. The unseen image is projected onto the sim-
plex spanned by the P (w|z) learnt during training, i.e. the mixing coefficients
P (zk|dtest) are sought such that the Kullback-Leibler divergence between the
measured empirical distribution and P (w|dtest) =

∑
zεZ P (w|z)P (z|dtest) is min-

imized. This is achieved by running EM in a similar manner to that used in
learning, but now only the coefficients P (zk|dtest) are updated in each M-step
with the learnt P (w|z) kept fixed. The result is that the test image is represented
by a Z-vector. The test image is then classified using a K Nearest Neighbours
classifier (KNN) on the Z-vectors of the training images. An Euclidean distance
function is used. In more detail, the KNN selects the K nearest neighbours of the
new image within the training database. Then it assigns to the new picture the
label of the category which is most represented within the K nearest neighbours.
Figure 1 shows graphically the learning and classification process.

4 Visual words and visual vocabulary

In the formulation of pLSA, we compute a co-occurrence table, where each image
is represented as a collection of visual words, provided from a visual vocabulary.
This visual vocabulary is obtained by vector quantizing descriptors computed
from the training images using k-means, see the illustration in the first part of
Figure 1. Previously both sparse [1, 7, 14] and dense descriptors, e.g. [2, 8, 18],
have been used. Here we carry out a thorough comparison over dense descriptors
for a number of visual measures (see below) and compare to a sparse descriptor.
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Fig. 1. Overview of visual vocabulary formation, learning and classification stages.

We vary the normalization, sizes of the patches, and degree of overlap. The words
produced are evaluated by assessing their classification performance over three
different databases in Section 5.

We investigate four dense descriptors, and compare their performance to a
previously used sparse descriptor. In the dense case the important parameters
are the size of the patches (N) and their spacing (M) which controls the degree
of overlap:
Grey patches (dense). As in [18], and using only the grey level information,
the descriptor is a N × N square neighbourhood around a pixel. The pixels are
row reordered to form a vector in an N2 dimensional feature space. The patch
size tested are N = 5, 7 and 11. The patches are spaced by M pixels on a regular
grid. The patches do not overlap when M = N , and do overlap when M = 3
(for N = 5, 7) and M = 7 (for N = 11).
Colour patches (dense). As above, but the colour information is used for each
pixel. We consider the three colour components HSV and obtain a N2 × 3 di-
mensional vector.
Grey SIFT (dense). SIFT descriptors [9] are computed at points on a regular
grid with spacing M pixels, here M = 5, 10 and 15. At each grid point SIFT
descriptors are computed over circular support patches with radii r = 4, 8, 12
and/or 16 pixels. Consequently each point is represented by n SIFT descriptors
(where n is the number of circular supports), each is 128-dim. When n > 1,
multiple descriptors are computed to allow for scale variation between images.
The patches with radii 8, 12 and 16 overlap. Note, the descriptors are rotation
invariant.
Colour SIFT (dense). As above, but now SIFT descriptors are computed for
each HSV component. This gives a 128× 3 dim-SIFT descriptor for each point.



Coast Forest Mountain Open country Highway Inside city Tall building Street

Coast Forest Mountain Open country River Sky/clouds

Suburb Bedroom Kitchen Living room Office
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Fig. 2. Example images from the three different datasets used. (a) from dataset
OT [11], (b) from dataset VS [19], and (c) from the dataset FP [3]. The remaining
images of this dataset are the same as in OT but in greyscale.

Note, this is a novel feature descriptor. Another way of using colour with SIFT
features has been proposed by [4].
Grey SIFT (sparse). Affine co-variant regions are computed for each grey scale
image, constructed by elliptical shape adaptation about an interest point [10].
These regions are represented by ellipses. Each ellipse is mapped to a circle
by appropriate scaling along its principal axis and a 128-dim SIFT descriptor
computed. This is the method used by [1, 7, 14, 15].

5 Datasets and Methodology

5.1 Datasets

We evaluated our classification algorithm on three different datasets: (i) Oliva
and Torralba [11], (ii) Vogel and Schiele [19], and (iii) Fei Fei and Perona [3].
We will refer to these datasets as OT, VS and FP respectively. Figure 2 shows
example images from each dataset, and the contents are summarized here:
OT: includes 2688 images classified as 8 categories: 360 coasts, 328 forest, 374
mountain, 410 open country, 260 highway, 308 inside of cities, 356 tall buildings,
292 streets. The average size of each image is 250× 250 pixels.
VS: includes 702 natural scenes consisting of 6 categories: 144 coasts, 103 forests,
179 mountains, 131 open country, 111 river and 34 sky/clouds. The size of the
images is 720×480 (landscape format) or 480×720 (portrait format). Every scene
category is characterized by a high degree of diversity and potential ambiguities
since it depends strongly on the subjective perception of the viewer.



FP: contains 13 categories and is only available in greyscale. This dataset con-
sists of the 2688 images (8 categories) of the OT dataset plus: 241 suburb res-
idence, 174 bedroom, 151 kitchen, 289 living room and 216 office. The average
size of each image is approximately 250× 300 pixels.

5.2 Methodology

The classification task is to assign each test image to one of a number of cat-
egories. The performance is measured using a confusion table, and overall per-
formance rates are measured by the average value of the diagonal entries of the
confusion table.

Datasets are split randomly into two separate sets of images, half for training
and half for testing. We take 100 random images from the training set to find
the optimal parameters, and the rest of the training images are used to compute
the vocabulary and pLSA topics. A vocabulary of visual words is learnt from
about 30 random training images of each category.

The new classification scheme is compared to two baseline methods. These
are included in order to gauge the difficulty of the various classification tasks.
The baseline algorithms are:
Global colour model. The algorithm computes global HSV histograms for
each training image. The colour values are represented by a histogram with 36
bins for H, 32 bins for S, and 16 bins for V, giving a 84-dimensional vector for
each image. A test image is classified using KNN (with K = 10).
Global texture model. The algorithm computes the orientation of the gradient
at each pixel for each training image (greyscale). These orientations are collected
into a 72 bin histogram for each image. The classification of a test image is again
carried out using KNN.

Moreover the KNN classifier is also applied directly to the bag-of-words
(BOW) representation (i.e. to P (w|d)) in order to assess the gain in using pLSA
(where the KNN classifier is applied to the topic distribution P (z|d)).

6 Classification results

We investigate the variation of classification performance with change in visual
vocabulary, number of topics etc for the case of the OT dataset. The results
for the datasets FP and VS use the optimum parameters selected for OT and
are given in Section 6.2 below. For the OT dataset three classification situations
are considered: classification into 8 categories, and also classification within the
two subsets of natural (4 categories), and man-made (4 categories) images. The
latter two are the situations considered in [11]. We carry out experiments with
normalized images (zero mean and unit standard deviation) and unnormalized
images.

Excluding the preprocessing time of feature detection and visual vocabulary
formation, it takes about 15 mins to fit the pLSA model to 1600 images (Matlab
implementation on a 1.7GHz Computer).
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Fig. 3. Performance under variation in various parameters for the 8 category OT clas-
sification. Top: example visual words and performance for dense colour SIFT M = 10,
r = 4, 8, 12 and 16 (each column shows the HSV components of the same word).
Lower example visual words and performance for grey patches with N = 5 and M = 3.
(a) Varying number of visual words, V , (b) Varying number of topics, Z, (c) Varying
number k (KNN).

6.1 Classification of the OT dataset

We first investigate how classification performance (on the validation set – see
Section 5.2) is affected by the various parameters: the number of visual words
(V in the k-means vector quantization), the number of topics (Z in pLSA),
and the number of neighbours (K in kNN). Figure 3 shows this performance
variation for two types of descriptor – dense colour SIFT with M = 10 and four
circular supports, and grey patches with N = 5 and M = 3. Note the mode in
the graphs of V , Z and K in both cases. This is quite typical across all types of
visual words, though the position of the modes vary slightly. For example, using
colour SIFT the mode is at V = 1500 and Z = 25, while for grey patches the
mode is at V = 700 and Z = 23. For K the performance increases progressively
until K is between 10 and 12, and then drops off slightly. In the following results
the optimum choice of parameters is used for each descriptor type.

To investigate the statistical variation we repeat the dense colour SIFT ex-
periment (r = 4, 8, 12, 16 and M = 10) 15 times with varying random selection
of the training and test sets, and building the visual vocabulary afresh each
time. All parameters are fixed with the number of visual words V = 1500, the
number of topics Z = 25 and the number of neighbours K = 10. We obtained
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Fig. 4. (a) The performance when classifying the four natural categories using nor-
malized and unnormalized images and with overlapping and non-overlapping patches.
Colour patches are used. (b) Performance when classifying all categories, man-made
and natural using different patches and features. (CP = Colour patches - dense; GHA
= Grey Harris Affine - sparse; G4CC = Grey SIFT concentric circles - dense; C4CC =
Colour SIFT 4 concentric circles - dense; C1CC = Colour SIFT 1 Circle - dense; C2CC
= Colour SIFT 2 concentric circles - dense.

performance values between 79% and 86% with a mean of 84.78% and standard
deviation of 1.93%.

We next investigate the patch descriptors in more detail. Figure 4a shows the
results when classifying the images of natural scenes with colour-patches. The
performance when using unnormalized images is nearly 1% better than when
using normalized. When using overlapping patches, the performance increases
by almost 6% compared to no overlap. Similar results occur for the man-made
and all scene category sets. Comparing results when classifying the images using
only grey level information or using colour, it can be seen that colour brings an
increment of around 6-8%. This is probably because colour is such an important
factor in outdoor images, and helps to disambiguate and classify the different
objects in the scene. For colour patches the best performance is obtained when
using the 5× 5 patch over unnormalized images, with M = 3, V = 900, Z = 23
and K = 10.

The performance of SIFT features is shown in Figure 4b. The best results
are obtained with dense and not sparse descriptors. This is almost certainly
because we have more information on the images: in the sparse case the only
information is where a Harris detector fires and, especially for natural images,
this is a very impoverished representation. Again colour is a benefit with better
results obtained using colour than grey SIFT. The performance using grey SIFT
when classifying natural images is 88.56% and increase 2% when using colour
SIFT, both with four concentric support regions. The difference when using
these vocabularies with man-made images is not as significant. This reiterates
that colour in natural images is very important for classification. Turning to the
performance variation with the number of support regions for dense SIFT. It can
be seen that best results are obtained using four concentric circles. With only
one support region to represent each patch, results are around 1% worse. This is



Visual Vocabulary GP CP G4CC C4CC PS BOW GlC GlT

All categ. 71.51 77.05 84.39 86.65 82.6 82.53 55.12 62.21
Natural categ. 75.43 82.47 88.56 90.28 84.05 88.74 59.53 69.61

Man-made categ. 77.44 83.56 91.17 92.52 89.34 89.67 66.11 73.14

Table 1. Rates obtained different features when using database OT: GP (Grey
Patches), CP (Colour Patches), G4CC (Grey SIFT four Concentric Circles), C4CC
(Colour SIFT four Concentric Circles), PS (Colour Patches and Colour SIFT), BOW
(Bag-of-Words), GlC (Global colour), GlT (Global Texture).

probably because of lack of invariance to scale changes (compared to using four
support regions to represent each point).

All the results above are for P (z|d) with the KNN algorithm. Now we in-
vestigate classifying the BOW representation directly. We use V = 1500, Z =
25, K = 10, M = 10 and four concentric circles. When classifying the 4 natural
images in the OT dataset, the results using the topic distribution is 90.28 and
with the bag-of-words directly the classification performance decreases by only
around 1, 5%, to 88.74%. However for 8 categories, the performance decreases by
nearly 4%, from 86.65 to 82.53%. Using the 13 categories from the FP dataset,
the performance falls 8.4%, from 73.4% to 64.8%. Thus there is a clear gain in
using pLSA (over the BOW) when classifying a large number of categories.

Table 1 summarizes the results for the three OT image sets (all 8 categories,
4 natural and 4 man-made) covering the different vocabularies: grey and colour
patches, grey and colour SIFT, BOW classification and the two baseline algo-
rithms. From these results it can be seen that: (i) The baseline texture algorithm
works better than the baseline colour in all three cases. Despite its simplicity the
performance of the baseline texture algorithm on man-made images (73.14%) is
very high, showing that these images may be easily classified from their edge
directions. (ii) For the various descriptors there are clear performance conclu-
sions: man-made is always better classified than natural (as expected from the
baseline results); SIFT type descriptors are always superior to patches; colour is
always superior to grey level. The best performance (86.65% for all 8 categories)
is obtained using colour SIFT with M = 10 and four concentric circles. (iii)
Somewhat surprizingly, better results are obtained using the SIFT vocabulary
alone, rather than when merging both vocabularies (patches and SIFT). This
may be because the parameters (V , Z and K) have been optimized for a single
vocabulary, not under the conditions of using multiple vocabularies. This issue
will be investigated further.

The best classified scenes are highway and forest with 95.61% and 94.86%
of correct classified images respectively. The most difficult scenes to classify are
open country. There is confusion between the open country and coast scenes.
These are also the most confused categories in [11].

Figure 5 shows examples of segmentation of four topics using the colour SIFT
vocabulary. Circular patches are painted according to the maximum posterior



Fig. 5. Topics segmentation. Four topics (clouds – top left, sky – top right, vegetation –
lower left, and snow/rocks in mountains – lower right) are shown. Only circular regions
with a topic posterior P (z|w, d) greater than 0.8 are shown.

# img. (nt) 2000 1600 1024 512 256 128 32

Perf. P (z|d) 86.9 86.7 84.6 79.5 75.3 68.2 58.7
Perf. BOW 83.1 82.6 80.4 72.8 60.2 52.0 47.3

Table 2. Comparison of P (z|d) and BOW performance as the number of training
images used in KNN is decreased. The classification task is into 8 categories from the
OT dataset.

P (z|w, d):

P (z|w, d) =
P (w|z)P (z|d)∑

zlεZ
P (w|zl)P (zl|d)

(2)

For each visual word in the image we choose the topic with maximum pos-
terior P (z|w, d) and paint the patch with its associated colour, so each colour
represents a different topic (the topic colour is chosen randomly). To simplify
the figures we only paint one topic each time. Note that topics represent con-
sistent regions across images (enabling a coarse segmentation) and there is a
straightforward correspondence between topic and object.
Decreasing the number of training images. We evaluate now the classifi-
cation performance when less training data is available. The OT dataset is split
into 2000 training images and 688 test images. A varying number of nt labelled
images from the training set are used to learn the pLSA topics and for the KNN.
The classification performance is compared using P (z|d) and BOW vectors. The
vocabulary has V = 1500 words, and Z = 25 and K = 10. Four support regions
are used for each point spaced at M = 10. Table 2 shows the results. The gap
between pLSA and BOW increases as the number of labelled training images
decreases, as was demonstrated in [12].
Summary. The best results are obtained using dense descriptors – colour SIFT
with four circular support. Overlap increases the performance. When using the
SIFT vocabulary the values for the parameters giving the best results are M = 10
pixels with radius for the concentric circles support regions of r = 4, 8, 12 and
16 pixels and V = 1500, Z = 25 and K = 10. For patches the best results are



Dataset # of categ. our perf. authors’ perf.

OT 8 86.65 –
OT 4 Natural 90.2 89.0 [11]
OT 4 Man-Made 92.5 89.0 [11]
VS 6 85.7 74.1 [19]
FP 13 73.4 65.2 [3]

Table 3. Comparison of our algorithm with other methods using their own databases.

for N = 5, M = 3, V = 900, Z = 23 and K = 10. In both, colour information
is used. The result that dense SIFT gives the best performance was also found
by [2] in the case of pedestrian detection. It it interesting that the same feature
applies both to more distributed categories (like grass, mountains) as well as the
compact objects (pedestrians) of their work where essentially only the boundaries
are salient.

6.2 Comparison to previous results

We compare the performance of our classification algorithm to the supervised
approaches of Vogel and Schiele [19] and Oliva and Torralba [11], and the semi-
supervised approach of Fei Fei and Perona [3], using the same datasets that they
tested their approaches on. For each dataset we use the same parameters and
type of visual words (V = 1500, Z = 25 and K = 10 with SIFT and four circular
supports spaced at M = 10). We used colour for OT and VS and grey for FP.
The visual vocabulary is computed independently for each dataset, as described
in section 5.2. We return to the issue of sharing vocabularies across datasets in
section 6.3. The results are given in Table 3.

Note that much better results are obtained with the four natural scenes of
OT, than with the six of VS. This is because the images in VS are much more
ambiguous than those of OT and consequently more difficult to classify. Our
method outperforms all of the previous methods, despite the fact that our train-
ing is unsupervised in the sense that the scene identity of each image is unknown
at the pLSA stage and is not required until the KNN classification step. This is
in contrast to [3], where each image is labelled with the identity of the scene to
which it belongs during the training stage. In [19], the training requires man-
ual annotation of 9 semantic concepts for 60000 patches, while in [11] training
requires manual annotation of 6 properties for thousands of scenes. We are not
using the same split into training and testing images as the original authors:
for OT we use approximately 200 images per category which means less train-
ing images (and more testing images) than [11], who used between 250 and 300
training images per category. For VS we used 350 images for training and 350
also for testing which also means less training images than [19] who used ap-
proximately 600 training images. When working with FP we used 1344 images
for training, which is slightly more than [3], who used 1300 (100 per category)
training images.



Discussion. The superior performance (compared to [3, 19]) could be due to the
use of better features and how they are used. In the case of Vogel and Schiele,
they learn 9 topics (called semantic concepts) that correspond to those that
humans can observe in the images: water, trees, sky etc. for 6 categories. Fei Fei
and Perona learn 40 topics (called themes) for 13 categories. They do not say
if these topics correspond to natural objects. In our case, we discover between
22 and 30 topics for 8 categories. These topics can vary depending if we are
working with colour features (where topics can distinguish objects with different
colours like light sky, blue sky, orange sky, orange foliage, green foliage etc...) or
only grey SIFT features (objects like trees and foliage, sea, buildings etc...). In
contrast to [19] we discover objects that sometimes would not be distinguished
in a manual annotation, for example water with waves and water without waves.
Our superior performance compared to [11] could be due to their method of scene
interpretation. They use the spatial envelope modeled in a holistic way in order
to obtain the structure (shape) of the scene using coarsely localized information.
On the other hand, in our approach specific information about objects is used
for scene categorization.

6.3 Other applications

We applied the pLSA based classifier in three other situations. The first one is
also a classification task, but combining the images of two different datasets, the
second is a relevance feedback application, and the third is scene retrieval for the
film Pretty Woman [Marshall, 1990]. In all the following the descriptor is dense
colour SIFT with circular support and V = 700, Z = 22 and K = 10 (these are
the optimal parameter values when working with the four natural scenes).
Vocabulary generalization. In this classification test, we train the system
with the four natural scenes of the OT dataset (coast, forest, mountains and open
country) and test using the same four scene categories from the VS dataset. This
tests whether the vocabulary and categories learnt from one dataset generalizes
to another. We obtain a performance of 88.27% of correctly classified images.
Note, this performance is worse than that obtained when classifying the same
categories using only the OT database. This is because (i) images within the same
database are more similar, and (ii) the images in VS are more ambiguous and
not all represented in OT. To address (i) we will investigate using vocabularies
composed from both databases.
Relevance Feedback (RF). [20] proposed a method for improving the retrieval
performance, given a probablistic model. It is based on moving the query point
in the visual word space toward good example points (relevant images) and
away from bad example points (irrelevant images). The vector moving strategy
uses the Rocchio’s formula [13]. To test RF we simulate the user’s feedback
using 25 random images of each category. For each query image, we carry out
n iterations. At each iteration the system examines the top 20, 40 or 60 images
that are most similar to the query excluding the positive examples labelled in
previous iterations. Images from the same category as the initial query will be
used as positive examples, and other images as negative examples. We used 200
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Fig. 6. Example frames from the film Pretty Woman with their classification. The
classifier is trained on the OT dataset.

query images, 25 of each category, in OT dataset. Best results are obtained when
considering the top 60 images, The first 100 images can be retrieved with an
average precision of 0.75. The most difficult category to retrieve is open country
while the better retrieved are forest and highway followed by tall buildings. This
is in accordance with the classification results.
Classifying film frames into scenes. In this test the images in OT are again
used as training images (8 categories), and key frames from the movie Pretty
Woman are used as test images. We used one of every 100 frames from the
movie to form the testing set. In this movie there are only a few images that
could be classified as the same categories used in OT, and there are many images
containing only people. So it is a difficult task for the system to correctly classify
the key frames. However, the results obtained (see Figure 6) are very encouraging
and show again the success of using pLSA in order to classify scenes according
to their topic distribution.

7 Conclusions

We have proposed a scene classifier that learns categories and their distributions
in unlabelled training images using pLSA, and then uses their distribution in test
images as a feature vector in a supervised nearest neighbour scheme. In contrast
to previous approaches [3, 11, 19], our topic learning stage is completely unsuper-
vised and we obtain significantly superior performance. We studied the influence
of various descriptor parameters and have shown that using dense SIFT descrip-
tors with overlapping patches gives the best results for man-made as well as
for natural scene classification. Furthermore, discovered topics correspond fairly
well with different objects in the images, and topic distributions are consistent
between images of the same category. It is probably this freedom in choosing
appropriate topics for a dataset, together with the optimized features and vo-
cabularies, that is responsible for the superior performance of the scene classifier
over previous work (with manual annotation). Moreover, the use of pLSA is
never detrimental to performance, and it gives a significant improvement over
the original BOW model when a large number of scene categories are used.
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