
Polymorphic Type Inference

In this, we will discuss a typed λ-calculus, which allows for polymorphic functions. To be specific, we
will discuss a kind of polymorphism where function parameters specify the types of some of the identifiers.
This is called parametric polymorphism. We will discuss Milner’s algorithm to infer types when they are
not given.

1 A Typed λ calculus

There are several variants of λ-calculus with types. A standard way to introduce this is to consider λ-
calculus where every identifier is annotated with a type. Since the λ-calculus we will consider for this section
adopts a different approach, we will give only a brief introduction to the simply typed λ-calculus with type
annotations. This discussion is taken from [2].

For example, we will consider a single ground type {o}. We could, of course, start with a richer type
system, but it is unnecessary for now.

Given the ground types, we could consider more sophisticated types. For example, we could consider
types of functions mapping some type to another. So the grammar for types is:

τ ::= {o} | τ → τ.

Given this grammar, the following expressions are valid types.

{o} → {o}, {o} → {o} → {o}.

Let V be a countably infinite set of variables. We will consider pre-terms defined by the grammar. One
noticeable difference is that the λ-term now contains an annotation declaring that the variable has a certain
type.

T = V | T T | λV : τ · T .

Not every preterm is considered a valid term of the typed λ-calculus. We will give a set of inference rules
which will finally specify which λ-pre-terms are valid terms of the simply typed λ-calculus. This step is one
crucial difference between the untyped and the simply typed calculi.

A context is a mapping of a finite set of variables to types. They are written in the form xi : Ti . . . xn : Tn.
In this expression, xi : Ti indicates that in the context, the variable xi has type Ti.

1

A judgment is a ternary relation Γ ` s : B indicating that in the context Γ, we can deduce that s has
type B.

x1 : T1 . . . xn : Tn ` xi : Ti 1 ≤ i ≤ m

Γ ` f : S → T Γ ` x : S

Γ ` fx : T

Judgment for application

Γx : A ` e : B
Γ ` (λx : S · e) : S → T

Judgment for λ-abstraction

We will deal with a slightly different typed system in which the terms do not have explicit type annota-
tions.

2 The Language

We follow Cardelli [1] in introducing the following language:

Exp :=Var |
if Exp then Exp else Exp |
λVar ·Exp |
Exp (Exp) |
let Decl in Exp

Decl :=Var = Exp |
Decl then Decl

rec Decl

(Decl)

Data types are introduced into the language by having a predefined set of identifiers in the initial
environment.

An Example program:

2

let rec factorial =

λn·
if zero(n)

then succ(0)

else times(n)(factorial(pred(n)))

in factorial(0)

Our goal is to introduce a system where types can contain type variables, which will be determined by
the compiler. For example, in

let id =(λa : α · a) //α is a type variable

id(3)

id(true)

id(id) //type error

we introduce a polymorphic identity expression. It is more general than the identity function in a
language which allows parameters of only a specific type.

A similar declaration is possible in a dynamically typed language like Oz. If the invocation involves
a wrong type, then we would get an exception at runtime. What is different about the type inferencing
algorithm is that at compile-time, we can infer the types.

We have the best of both - the flexibility of dynamic types, and the safety of a static typed system. The
algorithm we will describe is due to Milner. It can infer types in the absence of type declarations. It is
sound (), efficient (linear time in the size of the source code), and supports a sophisticated type system. We
will present only the language above. Sophisticated type inferencing with exception handling, overloading,
mutable data, records and union types are not covered.

3 Types

A type can be

• A Type variable: e.g. α, β etc. standing for an arbitrary type.

• A Type operator. These can be nullary operators like Int, Bool, or operators taking arguments, like
→ (the function operator) and × (the cartesian product). These are described below.

α → β is an arbitrary function mapping domain α to a Ottoman β. α × β is a type of any pair of
values.

Types (like α → β) containing type variables are called polymorphic types. Types (like Int → Bool)
devoid of type variables are called monomorphic types.

3

Expressions involving multiple occurrences of the same type variable (like α→ α) are contextual depen-
dencies.

The underlying algorithm for instantiation is unification. The typechecking unification fails when either
it tries to match different type operators (as in Int and Bool) or it tries to resolve circular type definitions
(as in α and α→ β.)

Since circular types are forbidden, functions such as

(λx · xx)

are invalid in our language.

4 Initial Type Environment

The initial type environment consists of certain identifiers. For our discussion, it suffices to consider the
following.

5 The Algorithm, Part I

There are the following cases.

1. When a variable x is introduced by a λ-binder, it is assigned a new type variable α. This is stored in
an environment.

2. In a conditional, if the if condition expression is matched to Bool, the then and the else clauses are
unified to determine a unique type for the whole expression.

3. In (λx · e), the type of e is inferred in an environment where x is associated with a new type variable.

4. In an application fe where the type of e is α, we can infer that f : A → β where beta is a new type
variable.

6 An Example: Compose

We will apply the algorithm to infer the type of the λ-expression for composition defined as

(λg · (λf · (λx · f(gx))))

Even though the algorithm has been described in a top-down fashion, it works in a bottom-up manner.
We will now derive the type of the composition expression in a bottom-up fashion. We do not use any free
variables in this definition, hence the initial environment can be empty.

4

x : α

g : ε1

(gx) : β

f : ε2

f(gx) : γ

E = (λx · f(gx)) : α→ γ Evaluating f(gx) in the environment with x : α

Unify(ε1, α→ β)

F = (λf · E) : (β → γ)→ (α→ γ) E evaluated with f : ε2

Unify(ε2, β → γ)

G = (λg · F) : (α→ β)→ (β → γ)→ (α→ γ) F evaluated with g : α→ β

7 The Algorithm, Part II: Let expressions and Declarations

The type inferencing of let expressions involves the concept of generic variables. To motivate this concept,
let us consider λ bound variables.

Consider the following function.

(λf · pair(f(0), f(true)))

What should be the type of f? The first instance, according to our algorithm, would suggest a type of
Int→ β. The second instance would suggest a type of Bool→ β. However, unification of these two types
will fail. This is a limitation of Milner’s type inferencing algorithm.

Type variables occurring in the type of a λ expression are called non-generic. They are shared between
all of their occurrences in the λ expression, and this could lead to conflicts.

How is the above case different from the following code?

let id = (λa · a)

in pair(id(0), id(true))

In this case, we know what id is. We can think that unlike the λ-bound variable f which was available
to us only as a “black box”, we have the definition of id available to us. This allows us to infer its type in a
more general manner than in the previous example.

The type of id is inferred as α→ α by our algorithm. Every instance of id which occurs in the body of
the let expression can be instantiated to a different type.

For example, in the occurrence id(0), following the algorithm, the instance of id has type Int → Int.
In its second occurrence, id has type Bool → Bool. This can be achieved by making a copy of the type

5

of id for every distinct occurrence, and then instantiating it. We have to allow these different instances.
Otherwise, polymorphism would be absent.

Definition 1. Type variables which occur in the type of a let expression, and which do not occur in an
enclosing λ-definition are called generic variables.

We will see what the problem of enclosing λ definitions are.

λg·
let id = g

in pair(id(0), id(true))

This example should also cause a unification failure. Non-generic variables are shared between occur-
rences. We should not make new copies of the non-generic type variable for g. Hence this case is the same
as the first.

Our algorithm should therefore consider whether a variable is generic before deciding the instantiating
mechanism. To incorporate this facility into our algorithm, we can maintain a list of non-generic variables.
Any variable which is absent from the list is a generic variable. This list is augmented when entering a
λ-declaration, and it automatically is restored to the previous list when leaving the λ-expression. (This is
similar to how we determine the list of bound variables in a procedure.) Now we can discuss the algorithm
for let expressions.

5. To infer the type of let, we infer the type of its declaration part. This yields a new environment of
identifiers and types, which we can use to infer the type of the body of let.

6. Suppose a declaration is of the form xi = ti. Then we introduce 〈xi, Ti〉, where ti : Ti.

In the case of mutually recursive declarations, we first create an environment with 〈xi, αi〉 where αi are
non-generic type variables. In this environment, we infer the types of ti. Their types Ti are unified with αi.

8 Inferring the type of the Length

We will consider an example of inferring types in presence of let expressions. The following expression defines
a λ-term to evaluate the length of a homogeneous list. The type of a homogeneous list is denoted αList.

let rec length =

λl · .

if null(l)

then 0

else succ(length(tail l))

6

It has the following free variables. We will start with the environment containing the corresponding
types.

null : αList→ Bool

0 : Int

succ : Int→ Int

tail : αList→ αList

The crucial steps in inferring the type of length are as follows.

l : γ

null(l) : Bool Type of null

l : αList Unify(γ, αList)

Since 0 : Int and the rule for the if block enforces that both the then clause and the else clause have
the same type, after unification, we obtain

succ(length(tail l)) : Int

Unifying l : α with the type of tail : βList → βList (Important: We pick new variable names for the
type of tail.) gives us that β = α. Further,

length : αList→ δ.

Further unifying with succ resolves δ, giving us that

length : αList→ Int

What’s left

We have not talked about the formal semantics of type checking. We could define a system of axioms
and inferences (as in the case of the simply typed λ calculus) and prove that type of every well-formed
expression is correctly inferred by the algorithm. This lies outside our scope. Interested readers might refer
to [1].

References

[1] Luca Cardelli. Basic polymorphic type checking. Science of Computer Programming, 8(2):147–172, 1987.

[2] Ralph Loader. Notes on simply typed lambda calculus. 1998.

7

