Caristi's fixed point theorem in reverse mathematics

Keita Yokoyama*

Japan Advanced Institute of Science and Technology y-keita@jaist.ac.jp

Caristi's fixed point theorem is a fixed point theorem for (possibly discontinuous) functions on a complete metric space. We will consider a function controlled by a lower semi-continuous function which can be viewed as the potential.

Definition 1. A Caristi system is a tuple (X, C, f, V), where X is a complete metric space, $C \subseteq X$ is closed, $f: C \to C$ is arbitrary, $V: C \to (0, \infty)$ is a lower semi-continuous function, and for all $x \in C$, $d(x, f(x)) \leq V(x) - V(f(x))$.

Here, we think of V as a potential, *i.e.*, $x \in X$ loses some potential when we apply f. Now Caristi's theorem is stated as follows:

Theorem 1 (Caristi's fixed point theorem). Any Caristi system (X, C, f, V) has a fixed point, that is, there is $x_* \in C$ such that $f(x_*) = x_*$.

The original proof of this theorem is done by a simple (but possibly transfinite) iteration: we will consider $x, f(x), f(f(x)), \ldots$ as long as it would reach the fixed point. Nevertheless, there is actually a special fixed point only depending on (X, C, V) by the following theorem.

Theorem 2 (Critical point theorem). Let X be a complete metric space and $V: C \to (0, \infty)$ be a lower semi-continuous function. Then, there exists $x_* \in X$ such that for any $y \in X$, if

$$d(x_*, y) \le V(x_*) - V(y),$$

then $y = x_*$. Such x_* is called a critical point for V.

One can easily check that a critical point for V is a fixed point for any Caristi system controlled by V.

We would like to study the reverse mathematical strength of the above theorems (for complete separable metric spaces). Indeed, Theorem 2 is naturally formalizable within second-order arithmetic (note that lower semi-continuous functions can be coded in a similar way to continuous functions), and it is notably strong.

Theorem 3. The critical point theorem is equivalent to Π_1^1 -CA₀ over RCA₀.

^{*} This work is partially supported by JSPS Grant-in-Aid 16K17640 and JSPS Coreto-Core Program (A. Advanced Research Networks).

On the other hand, one may find a fixed point for some certain class of functions/spaces by the original iteration argument. We will study various versions of Caristi's theorem within the setting of reverse mathematics. For example, we can see the following.

- **Theorem 4.** 1. Caristi's fixed point theorem for continuous functions is equivalent to ACA_0 over RCA_0 .
- 2. Caristi's fixed point theorem for Baire class 1 functions implies ATR_0 over $\mathsf{RCA}_0.$

This is a joint work with David Fernández-Duque and Paul Shafer.